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Text−Terminal−HOWTO

David S. Lawyer  mailto:dave@lafn.org

v1.29, March 2002 

This document explains what text terminals are, how they work, how to install and configure them, and
provides some info on how to repair them.  If you don't have a terminal manual, it may be of help.  While it's
written for real terminals on a Linux system, some of it is also applicable to terminal emulation and may be
helpful for non−Linux systems. 

1. Introduction 

1.1 Copyright, Trademarks, Disclaimer, & Credits• 
1.2 Future Plans: You Can Help• 
1.3 New Versions of this HOWTO• 
1.4 Changes in Recent Versions:• 
1.5 Related HOWTOs, etc. • 
1.6 Terminology Used in this Document• 
1.7 What is a Terminal ?• 

2. Types of Terminals

2.1 Dumb Terminals• 
2.2 Text Terminals• 
2.3 Graphic GUI Capabilities of Text Terminals• 
2.4 Thin Clients (Terminals ?)• 
2.5 Emulation on a PC• 

3. Quick Install 

4. Why Use a Terminal ?

4.1 Intro to Why Use a Terminal• 
4.2 Lower Hardware Costs ?• 
4.3 Control of Software• 
4.4 Hardware Upgrades• 
4.5 Other Advantages of Terminals• 
4.6 Major Disadvantages of Terminals• 
4.7 Are Text Terminals Obsolete ?• 

5. Overview of How Terminals Work (in Linux) 

5.1 Device Names • 
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5.2 Login/Logout• 
5.3 Half/Full Duplex • 
5.4 Terminal Memory• 
5.5 Commands for the Terminal• 
5.6 Lack of Standardization Solved by Terminfo• 
5.7 The Interface• 
5.8 Emulation• 
5.9 The Console• 

6. Terminal Special Files such as /dev/tty 

6.1 Serial Port Terminals• 
6.2 Pseudo Terminals• 
6.3 The Controlling Terminal /dev/tty• 
6.4 /dev/ttyIN "Terminals"• 
6.5 The Console: /dev/ttyN • 
6.6 Creating a Device with "mknod"• 

7. Some Details on How Terminals Work 

7.1 Terminal Memory Details • 
7.2 Early Terminals • 
7.3 Escape Sequences and Control Codes (intro)• 
7.4 Display Attributes & Magic Cookies • 

8. Special Features of Some Terminals

8.1 Color• 
8.2 Multiple Sessions• 
8.3 Printer/Auxiliary Port• 
8.4 Pages • 
8.5 Character−Sets • 
8.6 Fonts• 
8.7 Keyboards & Special Keys• 
8.8 Mouse• 

9. Terminal Emulation (including the Console) 

9.1 Intro to Terminal Emulation• 
9.2 Don't Use TERM Variable For Emulation• 
9.3 Communication (Dialing) programs• 
9.4 Testing Terminal Emulation• 
9.5 The Linux Console • 
9.6 Emulation Software• 

10. Flow Control (Handshaking) 

10.1 Why Is Flow Control Needed ?• 
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10.2 Padding • 
10.3 Overrunning a Serial Port• 
10.4 Stop Sending• 
10.5 Keyboard Lock • 
10.6 Resume Sending• 
10.7 Hardware Flow Control (RTS/CTS etc.) • 
10.8 Is Hardware Flow Control Done by Hardware ?• 
10.9 Obsolete ?? ETX/ACK or ENQ/ACK Flow Control• 

11. Physical Connection 

11.1 Introduction• 
11.2 Multiport I/O Cards (Adapters)• 
11.3 Direct Serial Cable Connection.• 
11.4 Modem Connection• 
11.5 Telnet• 
11.6 Terminal Server Connection• 
11.7 Connector and Adapter Types• 
11.8 Making or Modifying a Cable• 

12. Set−Up (Configure) in General 

12.1 Intro to Set−Up• 
12.2 Terminal Set−Up (Configure) Overview • 
12.3 Computer Set−Up (Configure) Overview• 
12.4 Many Options• 
12.5 Communication Interface Options • 
12.6 Quick Attempt• 
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13.14 Function Keys • 
13.15 Block Mode Options• 
13.16 Locks• 
13.17 Screen Saver {Scrn Saver}• 
13.18 Printer• 
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14. Computer Set−Up (Configure) Details 

14.1 Getty (used in /etc/inittab) • 
14.2 Stty & Setserial • 
14.3 Setserial • 
14.4 Stty • 
14.5 Terminfo & Termcap (brief) • 
14.6 Setting TERM and TERMINFO• 
14.7 Rarely Needed /etc/ttytype File• 
14.8 Login Restrictions • 
14.9 Run Command Only If TERM=my_term_type• 
14.10 Character Mapping: mapchan • 

15. Terminfo and Termcap (detailed) 

15.1 Intro to Terminfo• 
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15.5 Init String • 
15.6 TERM Variable • 
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16. Using the Terminal

16.1 Intro to Using the Terminal• 
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16.3 Terminal (Serial) Device Driver• 
16.4 Problems with Editors• 
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17.1 Make a Serial Terminal the Console • 
17.2 Run Linux without a Monitor• 
17.3 Use a Keyboardless Terminal as the Monitor • 
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18. Trouble−Shooting 

18.1 Terminal Was Working OK • 
18.2 Terminal Newly Installed • 
18.3 Is the Terminal OK ? • 
18.4 Missing Text • 
18.5 All Keys Work Erratically; Must Hit a Key a Few Times• 
18.6 ... respawning too fast: disabled for 5 minutes• 
18.7 Fails Just After Login • 
18.8 Can't Login • 
18.9 Garbled Login Prompt • 
18.10 No Login Prompt • 
18.11 Displays Foreign/Weird Characters/Symbols• 
18.12 Displays Escape Sequences • 
18.13 Slow: pauses of several seconds between bursts of characters• 
18.14 Terminal doesn't scroll • 
18.15 Serial Monitoring/Diagnostics • 
18.16 Local Mode • 
18.17 Serial Electrical Test Equipment • 

19. Repair & Diagnose 

19.1 Repair Books & Websites • 
19.2 Safety• 
19.3 Appearance of Display• 
19.4 Diagnose• 
19.5 Detective work• 
19.6 Error Messages on the Screen• 
19.7 Capacitors• 
19.8 Keyboards • 

20. Appendix A: General

20.1 List of Linux Terminal Commands• 
20.2 The Internet and Books• 
20.3 Non−Linux OSs • 

21. Appendix B: Escape Sequence Commands Terminology 

21.1 Esc Sequence List • 
21.2 8−bit Control Codes• 
21.3 Printer Esc • 
21.4 Reports• 
21.5 Cursor Movements• 
21.6 Pages (definition) • 
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22. Appendix C: Serial Communications on EIA−232
(RS−232)

22.1 Intro to Serial Communication• 
22.2 Voltages• 
22.3 Parity Explained • 
22.4 Forming a Byte (Framing)• 
22.5 Limitations of EIA−232• 
22.6 Synchronization & Synchronous • 
22.7 Block Mode • 
22.8 EIA−232 (RS−232) Books • 
22.9 Serial Software• 

23. Appendix D: Notes by Brand/Model

23.1 CIT• 
23.2 IBM Terminals • 
23.3 Teletypes • 
23.4 VT (DEC) • 
23.5 Wyse Terminals • 

1. Introduction 

For a quick attempt to install a terminal see  Quick Install. 

1.1 Copyright, Trademarks, Disclaimer, & Credits

Copyright

Copyright 1998−2001 by David S. Lawyer. mailto:dave@lafn.org

Please freely copy and distribute (sell or give away) this document in any format.  Send any corrections and
comments to the document maintainer.  You may create a derivative work and distribute it provided that you: 

If it's not a translation: Email a copy of your derivative work (in a format LDP accepts) to the
author(s) and maintainer (could be the same person).  If you don't get a response then email the LDP
(Linux Documentation Project): submit@linuxdoc.org.

1. 

License the derivative work in the spirit of this license or use GPL.  Include a copyright notice and at
least a pointer to the license used.

2. 

Give due credit to previous authors and major contributors.3. 

If you're considering making a derived work other than a translation, it's requested that you discuss your plans
with the current maintainer. 
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Disclaimer

While I haven't intentionally tried to mislead you, there are likely a number of errors in this document.  Please
let me know about them.  Since this is free documentation, it should be obvious that I cannot be held legally
responsible for any errors. 

Trademarks.

Any brand names (starts with a capital letter) should be assumed to be a trademark).  Such trademarks belong
to their respective owners. 

Credits

Much of the section "Physical Connection" is from Serial−HOWTO v. 1.11 (1997) by Greg Hankins (with
his permission).  His "How Do I Set Up A Terminal Connected To My PC?" was incorporated into v1.00 at
various places.  v1.09 has about 25 changes (and error corrections) suggested by Alessandro Rubini who
reviewed this HOWTO.  Jeremy Jon Spykerman told me about using a keyboardless terminal as a console for
a monitorless PC (using ttysnoop).  In 2001 (v1.26) I fixed about 25 typos, etc. found by Alain Cochard: 

1.2 Future Plans: You Can Help

Please let me know of any errors in facts, opinions, logic, spelling, grammar, clarity, links, etc.  But first, if
the date is over a few months old, check to see that you have the latest version. Please send me any info that
you think belongs in this document. 

Starting with version 1.00, a first attempt was made to help people set up terminals without recourse to a
terminal manual.  Much more is needed in this respect.  One way to solve this problem would be for more
terminal manufacturers put their manuals on the Internet.  Wyse has already done so.  I suggest that you
encourage others to do so (if they haven't already).  The task of providing information on how to configure
most terminals in this HOWTO is daunting.  There are so many different terminals, but there are far fewer
models than there used to be in the 1980,s so the task is not totally infeasible. 

Please send me any surplus terminal manuals which you may have, especially on terminals made within the
past 10 years (but I'll accept older ones also).  Also, you might want to write up something on a certain
terminal to put in the Appendix D: Notes by Brand Name. 

1.3 New Versions of this HOWTO

New versions of the Text−Terminal−HOWTO should be released every few months or so.  They will be
available to browse and/or download at LDP mirror sites.  For a list of mirror sites see:
http://linuxdoc.org/mirrors.html.  Various formats are available.  If you only want to quickly check the date of
the latest version look at  http://linuxdoc.org/HOWTO/Text−Terminal−HOWTO.html.  The version your are
currently reading is: v1.29, March 2002 . 

1.4 Changes in Recent Versions:

v1.29 Mar. 2002: key−switch spring and bending "contact", getty:  Red Hat url, getty: source code −>
executable code 

• 

 Text−Terminal−HOWTO 

Disclaimer 7

http://linuxdoc.org/mirrors.html
http://linuxdoc.org/HOWTO/Text-Terminal-HOWTO.html


v1.28 Jan. 2002:Wyse "manuals" online, fixed a few broken links• 
v1.27 Nov. 2001: spell checked, more on stuck keys• 
v1.26 Nov. 2001: text browsers, fixed link to cca.org (was caa.org), about 20 typos fixed• 
v1.25 Oct. 2001: Linux Terminal Server Project, bad line in inittab may cause respawning too
rapidly, Evolution of the "terminal server" had contents in title (my format error), eliminating
overstrikes in files

• 

v1.24 Aug. 2001 Respawning too fast due to no such device, block mode obsolete, troubleshooting:
displays escape sequences, detective work for repair

• 

v1.23 July 2001: 10−cond. is not RJ45/48 ?, corrupted character attributes• 
v1.22 May 2001 Clarity: 8−bit, ASCII, national replacement characters, CP1252=MS−ANSI• 
v1.21 April 2001 More on mgetty, getty−login sequence, agetty parity problem, types of "terminal
servers", parity set shows upper 128 chars., Correction: PCTerm doesn't work with MS DOS,
troubleshooting: no CD signal

• 

1.5 Related HOWTOs, etc. 

Go to the nearest mirror site (per above) to get HOWTOs. 

Serial−HOWTO has info on Multiport Serial Cards used for both terminals and banks of modems.  It
has general technical info on the serial port including troubleshooting it.

• 

Low−Level Terminal Interface part of "GNU C Library Reference Manual" (in libc (or glibc) docs
package).  It covers the detailed meaning of "stty" commands, etc.

• 

MacTerminal mini−HOWTO• 
Modem−HOWTO• 
Serial−Programming−HOWTO• 
NC mini−HOWTO• 
NCD−X−Terminal mini−HOWTO• 
XDM−and−X−Terminal mini−HOWTO• 
NCD−HOWTO• 
Thinclient−HOWTO• 
Xterminal−HOWTO (unmaintained).  It's at
http://ibiblio.unc.edu/pub/Linux/docs/HOWTO/unmaintained/mini/Xterminal

• 

1.6 Terminology Used in this Document

Configuration means the same as set−up.  While Linux commands take options (using − or −− symbols),
options in a broader sense include various other types of choices.  Install in the broad sense includes setting up
(configuring) software and hardware.  A statement that I suspect is true (but may not be) ends with 2 question
marks: ??  If you know for sure, let me know. 

1.7 What is a Terminal ?

A terminal consists of a screen and keyboard that one uses to communicate remotely with a (host) computer.
One uses it just like it was a personal computer but the terminal is remote from its host computer (on the
other side of the room or even on the other side of the world).  Programs execute on the host computer but the
results display on the terminal screen.  Its computational ability is relatively low (otherwise it would be a
computer and not a terminal). This computational ability is generally limited to the ability to display what is
sent to it (possibly including full−screen graphics) and the ability to send to the host what is typed at the
keyboard. 
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In the days of mainframes from the mid 1970's to the mid 1980's, most people used text terminals to
communicate with computers.  They typed in programs, ran programs, wrote documents, issued printing
commands, etc.  A cable connected the terminal to the computer (often indirectly).  It was called a terminal
since it was located at the terminal end of this cable. 

If you've been using Linux (except for X Window use) with a computer monitor and keyboard you already
know what a terminal is because you have been using one (or more precisely a "virtual terminal").  The
monitor (along with the keyboard) is emulating a terminal.  In X Window the programs xterm, rxvt, and zterm
emulate terminals. 

A real terminal is different from a monitor because it's a different electronic setup.  A text terminal is often
connected to a serial port of the computer via a long cable.  Thus, in contrast to a monitor which is usually
located right next to the computer, a terminal may be quite a distance away from its host computer.  The video
card inside a computer stores the video image seen on the monitor screen.  For a terminal, the equivalent of
this video card is built right into the terminal but since text terminals are often monochrome without much
graphics, the capabilities of its "video card" are rather weak.  Also, most text terminals do not have mice. 

In network client−server terminology, one might think that the terminal is the client and that the host
computer is the server.  The terminal has been called a "thin client" by some.  But it is not actually a "client"
nor is the host a "server".  The only "service" the host provides is to receive every letter typed at the keyboard
and react to this just like a computer would.  The terminal is like a window into the computer just like a
monitor (and keyboard) are.  You may have already used virtual terminals in Linux (by pressing Left Alt−F2,
etc.).  A real terminal is just like running such a virtual terminal but you run it on its own terminal screen
instead of having to share the monitor screen.  In contrast to using a virtual terminal at the console (monitor),
this allows another person to sit at the real terminal and use the computer simultaneously with others. 

2. Types of Terminals

2.1 Dumb Terminals

There are various conflicting definitions of "dumb terminal" but as time goes by, more and more terminals
are called dumb.  This document mainly covers text terminals which display only text on the screen.  It could
have been titled "Dumb−Terminal−HOWTO".  But in some magazines articles, any terminal, no matter how
smart, including ones which present a full graphical user interface (GUI), are called dumb.  If all terminals are
"dumb" then there is no point of prefixing the word "dumb" to terminal (except as a sales pitch to sell
computers or the like in place of "smart" terminals).  Due to the ambiguous meaning of "dumb terminal" it is
not classified here as a type of terminal. 

2.2 Text Terminals

For a text terminal, a 2−way flow of information between the computer and the terminal takes place over the
cable that connects them together.  This flow is in bytes (such as ASCII) where each byte usually represents a
printable character.  Bytes typed at the keyboard go to the computer and most bytes from the computer are
displayed on the terminal screen.  Special control bytes (or sequences of bytes) from the computer tell the
terminal where to move the cursor to, what to erase, where to begin and end underlining and/or blinking
and/or bold, etc. There are often hundreds of such special commands and most terminals can even change
fonts. 
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The communication uses characters (letters) encoded using a code chart for the character set being used.
Usually, the first 128 bytes out of 256 possible bytes use ASCII codes.  Terminals for Unix−like systems,
normally connect to computers via a cable running between the asynchronous serial ports (RS−232−C =
EIA−232−D) of the host computer and terminal.  Sometimes the connection is via modem or terminal server,
etc. 

Other names for text terminals are "dumb terminal", "serial terminal", "character−cell terminal", "character
terminal", "ASCII/ANSI terminal", "asynchronous terminal", "data terminal", "video terminal", "video
display terminal" (VDT), and "green terminal" (since many used green displays).  In olden days "video
display unit" (VDU) was used for terminals but strictly speaking, it excludes the keyboard. 

"Block mode" was used exclusively by old IBM mainframe terminals but many modern terminals also have
this capability (which is not used much).  In block mode, the characters you type are temporarily retained in
the terminal memory (and may possibly be edited by a built−in editor at the terminal).  Then when the send
key (or the like) is pressed, a block of characters (sometimes just a line of characters) is sent to the computer
all at once.  Block mode (as of late 1998) is not supported by Linux.  See section  Block Mode. 

2.3 Graphic GUI Capabilities of Text Terminals

Many text terminals can display bit−mapped images, but not in color.  Unfortunately, the popular image
formats used on the Internet are not supported.  The protocols for terminal graphics include: Tektronix Vector
Graphics, ReGIS (DEC), Sixel (DEC), and NAPLPS (North American Presentation Level Protocol Syntax). 

Even without bit−mapped images, ordinary text terminals can sort of display images.  One may form  arrows
<−−− and draw boxes with _ and |.  With special graphic character sets, even more is possible.  By using all
the letters, one may produce "ascii graphics" art.  The term "graphics terminal" usually means a terminal that
can display bit mapped images.  However, this term is sometimes applied also to text−only terminals since
text is a limited form of graphics. 

Graphics GUI displays 

There are two basic types of graphics displays: raster and vector (rarely used).  Raster graphics (bit−mapped)
puts dots on the screen by horizontal scan lines drawn by an electron beam (or by activating pixels or dots on
a flat screen).  Vector graphic displays were intended to be used for monochrome screens that don't have any
dots. They use smart electronics to draw lines and curves with an electron beam that can move in any
direction (at any angle and location).  True vector graphics draws high quality lines without zig−zags but is
both rare and expensive.  For more details see  http://www.cca.org/vector/.  Raster graphics is almost
universally used today for both PCs and text terminals.  For PCs, images encoded in vector graphic format are
sometimes used but they are translated to raster graphics format for display (with a resulting drop in image
quality). 

2.4 Thin Clients (Terminals ?)

Introduction

These are thin (minimal) client computers that behave something like terminals.  Since text terminals (except
for very old ones) run an embedded operating system, they are also like a computer. Thin−clients need more
computing power.  In contrast to text−terminals thin clients all display a modern high−speed GUI.  They are
dependent on more powerful computers (servers) for their operation.  For a true thin client terminal, the
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computing work and disk storage will all be done on the server.  At the other extreme, most of this work and
storage is done at the thin client but some things such as administration, still depend on the server.  Since such
a client is not really "thin" it may more correctly be called a "fat client". 

Such clients are either sold as a stand−alone piece of hardware or created from an ordinary PC by using
software.  Linux seems to favor the use of PCs for this purpose. 

Some claim that text−terminals are also thin clients but they are not really since they don't conform to the
client−server model.  However, connecting a terminal via telnet does invoke the client−server model in the
use of telnet as a means of transport of data.  But the relation of the text−terminal to it's host is not one of
client−server.  The text−terminal is just another means of access to the computer just like the monitor and its
keyboard is.  One could apply this same reasoning to a thin client and say that the client−server relationship is
only for the transport of data. 

Thus a thin client is like a terminal.  It has a GUI with a mouse that makes it seem like you are using a
computer.  You are, but that computer may be far away and have many other people using it at the same time
you are.  Communication is over a high speed network cable or even over the Internet.  Some thin clients can,
in addition, emulate a text terminal and have a serial port connector for that purpose.  One even has a USB
interface. 

There are various types of thin clients.  One type is the "Window Terminal" which usually runs under MS
software and servers.  Another type is the "network computer" which is supposed to be platform neutral.  This
implies they should work with both MS Windows and Linux but early models may not be easy to use with
Linux. 

Window terminals

These can run under MS Windows NT/2000 using a proprietary protocol. They are true terminals since all the
computing work is done by the server running Windows.  They are also called "Window−based Terminals"
(WBT).  Some have support for unix−like systems as well and may not claim to be WBTs (even though they
can be used as WBTs).  They are something like computers since they run an operating system (often stored in
flash memory so it may be updated).  Some can support X Window also and can be used for Linux (from a
Linux server).  Many so called "network computers" can also run X Window.  This will be discussed in the
next section. 

For displaying the MS−Windows GUI, Citrix was (and is) a major player with what was called Winterm
using it's WinFrame software (which supported Windows 3.1).  Microsoft licensed some of this and then
came out with Hydra (code name), also known as "Windows Terminal Server". It works with versions 4 or
higher of MS Windows NT.  Then other companies that had their own proprietary systems for MS Windows
decided to support Microsoft's system. 

Citrix uses its ICA protocol and has created an add−on to Hydra known as pICAsso so that WinFrame (ICA)
based terminals can use the Hydra system.  There exits a ICA client that internally runs Linux (but connects to
a MS Window's server).  Microsoft has substituted RDP (Remote Desktop Protocol) for ICA.  Citrix has
replaced WinFrame with MetaFrame which supports Windows 95, etc. and is used in conjunction with
"Windows NT Terminal Server Edition". 

The above is sometimes called "network computing" since the terminals and servers connect to each other
over a network.  Network computers may be somewhat different as described below. 
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Network computers (NCs)

These are neither true computers nor true terminals but are something in−between.  One type of network
computer (NC's) is a computer with a CPU but no hard Disk.  The OS it needs to run is sent to it over a
network.  NCs are full−graphics and use the services of a server computer.  They are a little different from
terminals since some (or most) of the programs they run may execute on their own CPU chip.  Running a
browser was supposed to be one of their primary functions and thus Java code applets may be sent to them
for execution.  Many NCs support X Window so that one may use a Linux server to support it.  Such a server
may be called a "Linux Terminal Server".  IBM called their NC a "NetStation" but now calls it "NetVista".
They should work on Intranet type networks and NetVista can run the the Linux OS. 

Wintel came out with a "NetPC" which, unlike the above, is almost a PC computer.  However, it has no
removable disks so users can't install their own software or obtain copies of anything. 

Thin clients and NCs under Linux

There is a "Linux Terminal Server Project" (LTSP or ltsp) to use Linux as a server for diskless thin clients.
They use X Window and by default applications run on the server.  But with additional effort, one can set it
up so that some or all applications run on the "terminal".  See  http://www.ltsp.org/. 

"Terminal" in this name is actually a thin (or fat) client.  This project's client can also run a telnet session and
thus behave like a text−terminal.  They have created a software package named "lts" which is available in the
major Linux distribution. 

It's claimed that if one has only a few "terminals", they will work without the ltsp software.  But if one has
many "terminals", ltsp software is needed.  So use ltsp if what you want to do is to use old PCs, etc. as
diskless thin clients.  It works OK on systems with over 100 thin−client workstations. 

Linux provides NFS (Network File System) so that if ordinary computers are connected to each other via a
network, then a person on one computer can run programs on another computer.  Such a program sends
messages over the network so that it appears just like a program was being run by your local computer.  But
such a program is actually being run on another computer on the network.  It works also with X Window so
that one may see GUI images generated on another computer. 

Linux also allows a computer to be diskless and boot over a network. See the "Terminal Server Project"
above which has special software for this purpose.  Network−boot−HOWTO gives an overview.  Older
documents are Diskless−HOWTO and Diskless−root−NFS−HOWTO.  Thus using a diskless computer which
runs NFS enables you to run programs on another computer (the server).  This is just like using a NC
(Network Computer).  It's not really a NC but it's emulating a type of NC. It's also often called a "terminal"
and in some sense it is. 

Thus if you have an old PC with an ethernet card (NIC) you may be able to use it as a NC.  One source of info
on this is Thinclient−HOWTO. Even if your old PC doesn't have a NIC, you could still use it to emulate a
text−terminal.  See  Terminal Emulation. 

There are also a number of genuine Network Computers (NC) that will work with a Linux server.  Today
some NCs run the Linux OS inside the NC.  Before Linux became popular, NCs didn't run the Linux OS but
required some other OS.  But even if the NC uses a non−linux OS, it's often possible to make it work with a
Linux Server.  The non−linux OS is simply stored as files on the Linux Server.  Then when the NC starts up it
sends a message to the Linux Server asking for the non−linux OS files.  This non−linux OS is thus sent to the
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NC over the network and the NC boots. 

The Linux Server runs the NFS and X Window both of which must be supported by the NC.  This enables one
to use the NC as if it were an X Window terminal. 

There are some Linux HOWTOs for certain brands of NCs: 

JavaStation−HOWTO (by Sun)• 
NC−HOWTO (IBM NetStation)• 
NCD mini−HOWTO (NCD−ThinSTAR)• 
NCD−X−Terminal mini−HOWTO• 
XDM−and−X−Terminal mini−HOWTO• 

Hardware hookups

There are 3 different types of hardware arrangements for thin clients.  The first type just uses a PC computer
as a thin client by emulating a thin client.  It really isn't a thin client but it behaves like one.  The second type
looks just like a text−terminal.  It just looks like a monitor, with a connector for a keyboard and another
connector for a network cable.  It's a dedicated thin client and can't be used for anything else.  The third type
looks like a tiny computer. It uses a standard PC monitor and keyboard both of which plug into a small box
which is a "thin" computer.  This box provides an interface between the monitor/keyboard and the network. 

History and the future

Promoters of NCs and related Window−Terminals projected that they would soon replace millions of PCs.  In
1998 about .7 million thin clients were sold worldwide with (about 27% of them being NCs).  In 1999 it
dropped to .6 million but went up to .9 million in 2000 (vs. 1.3 million predicted).  Someone predicted 8.7
million in 2005.  I wouldn't bet on it. 

A major reason why growth was not as rapid as predicted is that PCs have come down in price in recent years
so that they are often not much more expensive than a thin client.  However, it's argued that even though thin
clients may cost the same as PCs, the maintenance and administration costs are less.  Note that thin clients
sometimes replace text terminals instead of PCs. 

2.5 Emulation on a PC

Since a PC has a screen and keyboard (as does a terminal) but also has much more computing power, it's easy
to use some of this computing power to make the PC computer behave like a text terminal.  This is called
"terminal emulation".  They usually emulate text−terminals. See  Terminal Emulation

3. Quick Install 

This is a quick procedure to install a terminal without going through a  Setup procedure for both the terminal
and the host computer.  It probably will not work right if the terminal happens to have been set up
incompatible with the computer.  If you don't understand some of it you'll need to consult other parts of this
document for more info. 
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To install a terminal, first look in /etc/termcap or terminfo.src  to find an entry for it (see  Terminfo
and Termcap (detailed)).  Figure out what serial port you'll connect it to and what the tty designation is for
that port (e.g. ttyS1), see  Device Names).  As the root user, edit /etc/inittab and add a getty command
next to the other getty commands.  The format of the getty command depends on which getty program you
use.  agetty (called just getty in the Debian distribution) is the easiest (no configuration file).  See the
"info" or "man re getty.  For getty parameters use the terminfo (or termcap) name (such as vt100) for
your terminal. Type in a baud−rate that the terminal supports.  But if you set the baud too high you may need
to use (See Flow Control). 

Then physically connect the main serial port of the terminal to the chosen serial port of the computer with a
null−modem cable and turn on the terminal.  Don't expect most ready−made cables to be wired correctly for
hardware flow control.  Make sure the baud−rate of the terminal is set the same as you gave to getty and that
its "data bits" is 8.  Then at the computer console type "init q" to apply the changes you made to the inittab
file.  You should now see a login prompt at the terminal.  If you don't, tap the terminal's return key.  If this
doesn't work read more of this document and/or see  Trouble−Shooting. 

4. Why Use a Terminal ?

4.1 Intro to Why Use a Terminal

PC's are so powerful today that just one PC can often support several persons using it at once, especially if
they are doing low−load tasks such as text editing, data entry, etc.  One way to do this is to connect a number
of terminals to a single PC (or other host computer) by modems or direct cable connection.  To do this, it's
usually best to have a multi−user operating system such as Linux so that each user at a terminal can use the
computer independently.  This has been called "time sharing" but it's not good terminology today since
"distributed" computing over a network is also a type of time sharing.  It might be better described as
"centralized" computing. But the central computer may be connected to the rest of the world via a network so
that terminal users may send email, browse the Internet with the lynx browser, etc.  So it's not exactly
"centralized" either. 

Terminals have seldom been used with PC's because the popular operating systems used for them (Windows,
DOS, and Mac) were not multiuser until 1998 (available for MS Windows NT) and previously could not
support terminals very well.  Now that Linux, a multiuser operating system, is freely available for PC's, the
use of terminals with PC's becomes more feasible.  The drawback is that text terminals are not smart enough
to support the type of graphical user interface (GUI) that many computer users today normally expect. 

4.2 Lower Hardware Costs ?

When Computers (including PCs) were quite expensive, lower hardware costs was a significant advantage of
using terminals.  Today with cheap PCs, the cost savings is problematical.  Here's what I wrote years ago when
PCs were more expensive.  It's still true today but of less significance. 

If several people use the same computer as the same time, there is a reduction in the amount of hardware
needed for the same level of service.  One type of savings is due to code sharing.  The application files on hard
disks are shared as well as shared libraries in memory (even when people are running different programs
provided they use some of the same functions in their code).  Another type of savings is due to reduction of
peak load.  The hardware of a single PC may be idle most of the time as people slowly type in information,
think, talk, or are away from their desks.  Having several people on the same computer at once makes good
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use of much of this idle time which would otherwise be wasted. 

These savings are substantial.  One may roughly estimate (using statistical theory) that for 9 persons (8
terminals & 1 console) the shared PC only needs only about 3 times as much capacity (in memory, disk
storage, CPU power, etc.) as a single PC in order to provide the same level of service per person.  Thus the
computational hardware for such a shared system should only cost about 1/3 as much per user. However, the
cost of the display hardware (CRT's, keyboards, video electronics, etc.) is about the same for both cases.  The
terminals have the added cost of requiring additional serial ports at the host computer. 

For a fair comparison with PC's, the terminals should have the same capabilities as the PC monitors.
Unfortunately, color graphic terminals for Linux (X Window) with high speed communication cost about as
much as a PC so in this case there not much (if any) savings in hardware costs.  But for text terminals there
will be some savings, especially if the terminals are obtained used at low cost. 

4.3 Control of Software

For centralized computing, software (and the updates to software) only need be installed and configured on
one host computer instead of several.  The person in charge of this computer may control and configure the
software which is installed on it.  This is advantageous if the person controlling the host computer does an
excellent job and knows about the needs and preferences of the other users.  Users can be restricted in playing
games or surfing the Internet by not installing the software (or by otherwise restricting access to it). Whether
or not centralized control is desirable depends on the situation. 

4.4 Hardware Upgrades

With terminals, the computer hardware upgrades take place on only one computer instead of many.  This
saves installation labor effort. While the cost of the hardware for the host computer upgrade will be more than
that for a single PC (since the host needs more computing power than a PC), the cost will be significantly less
than upgrading the hardware of a number of PC's being used instead of terminals. 

4.5 Other Advantages of Terminals

The elimination of noise from fans and disk drives (unless your using a PC to emulate a terminal).• 
The users of the terminals can share data and files and send e−mail to each other.  It's similar to a
local network.

• 

4.6 Major Disadvantages of Terminals

Text terminals have no high−speed graphic display (or high resolution graphics) although they can
often use graphic character sets to draw boxes, etc.  This lack limits the software that may be used on
it.

• 

If the host computer goes down, then no one can use the terminals either (unless there is a "standby"
host computer to connect to).

• 

4.7 Are Text Terminals Obsolete ?

Text terminals are technologically obsolete because for a slightly higher cost of hardware, one could build a
smarter terminal (with the same quality of display).  This wasn't always the case since around 1980 memory
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cost thousands of dollars per megabyte.  Today with low costs for memory and processors, one could turn a
text terminal into a GUI graphic terminal for only about a 10% or 20% increase in hardware cost.  Since a PC
can emulate a terminal, almost everyone using computers has a terminal emulator available. 

The reasons that text terminals are not fully obsolete are: 

The resolution of characters on the screen is better on monochrome terminals than for monitors in
text mode.

• 

Many people don't need full screen graphics.• 
Since running a text−terminal (in contrast to a GUI−graphics terminal) doesn't consume much of a
modern PC's resources, a large number of terminals may be efficiently run from one PC.

• 

5. Overview of How Terminals Work (in Linux) 

See also section  Some Details on How Terminals Work

5.1 Device Names 

Each terminal is connected to a serial port on the host computer (often just a PC).  The ports have names.
Normally they are: ttyS0, ttyS1, ttyS2 etc.  Starting with kernel 2.4 they may be named tts0, tts1, tts3, etc. 

These are represented by special files found in the /dev (device) directory.  ttyS0 (or tts0) corresponds to
COM1 in DOS or Windows. ttyS1 is COM2, etc.  See  Terminal Special Files for details on these and related
"devices" such as cua. 

5.2 Login/Logout

When the host computer starts up it runs the program getty.  The getty program runs the "login" program to
log people in.  See  Getty (used in /etc/inittab).  A "login:" prompt appears on the screen.  People at the
terminals log in (after giving their passwords) and then have access to the computer.  When it's time to shut
the terminal down, one normally logs out and turns the terminal off.  See  Login Restrictions regarding
restricting logins (including allowing the root user to log in at terminal). 

5.3 Half/Full Duplex 

If one watches someone typing at a terminal, the letters one types simultaneously appear on the screen.  A
naive person might think that what one types is being sent directly from the keyboard to the screen with a
copy going to the computer (half−duplex like, see next paragraph).  What is usually going on is that what is
typed at the keyboard is directly sent only to the host computer which in turn echoes back to the terminal
each character it receives (called full−duplex).  In some cases (such as passwords or terse editor commands)
the typed letters are not echoed back. 

Full−duplex means that there are two (dual) one−way communication links.  Full−duplex is the norm for
terminals.  Half−duplex is half of a duplex, meaning that there is only a single one−way communication link.
This link must be shared by communications going in both directions and only one direction may be used at a
time.  In this case the computer would not be able to echo the characters you type (and send to it) so the
terminal would need to also send each character you type directly to the terminal screen.  Some terminals have
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a half−duplex mode of operation which is seldom used. 

5.4 Terminal Memory

The image on a CRT tube will fade away almost instantly unless it is frequently redrawn on the screen by a
beam of electrons shot onto the face of the tube.  Since text sent to a terminal needs to stay on the screen, the
image on the screen must be stored in the memory chips of the terminal and the electron beam must
repeatedly scan the screen (say 60 times per second) to maintain the image.  See  Terminal Memory Details for
more details. 

5.5 Commands for the Terminal

The terminal is under the control of the computer.  The computer not only sends the terminal text to display
on the screen but also sends the terminal commands which are acted on.  These are  Control Codes (bytes) and
escape sequences.  For example, the CR (carriage return) control code moves the cursor the the left hand edge
of the screen.  A certain escape sequence (several bytes where the first byte is the "escape" control code) can
move the cursor to the location on the screen specified by parameters placed inside the escape sequence. 

The  first terminals had only a few such commands but modern terminals have hundreds of them.  The
appearance of the display may be changed for certain regions: such as bright, dim, underline, blink, and
reverse video.  A speaker in a terminal can "click" when any key is pressed or beep if a mistake has occurred.
Function keys may be programmed for special meanings.  Various fonts may exist.  The display may be
scrolled up or down.  Specified parts of the screen may be erased.  Various types of flow control may be used
to stop the flow of data when bytes are being sent to the terminal faster than the terminal can handle them.
There are many more as you will see from looking over an advanced terminal manual or from the Internet
links  Esc Sequence List

5.6 Lack of Standardization Solved by Terminfo

While terminals made for the US all used the same ASCII code for the alphabet (except for IBM terminals
which used EBCDIC), they unfortunately did not all use the same escape sequences.  This happened even
after various ANSI (and ISO) standards were established since these standards were never quite advanced
enough.  Furthermore, older terminals often lacked the capabilities of newer terminals. This might cause
problems.  For example, the computer might send a terminal an escape sequence telling it to split the screen
up into two windows of specified size, not realizing that the terminal was incapable of doing this. 

To overcome these problems a database called "termcap" (meaning "terminal capabilities") was established.
Termcap was later superceded by "terminfo".  This database resides in certain files on the computer and has a
section of it (sometimes a separate file) for each model of terminal.  For each model (such as VT100) a list of
capabilities is provided including a list of certain escape sequences available.  For example blink=\E5m means
that to make the cursor start blinking the terminal must be sent: Escape 5 m.  See Section  Termcap and
Terminfo (detailed) for more details.  Application programs may utilize this database by calling certain
C−Library functions.  One large set of such programs (over 200) is named "ncurses" and are listed in the
manual page for "ncurses" which comes with a developer's ncurses package. 

5.7 The Interface

The environment variable TERM is the type of terminal Linux thinks you are using.  Most application
programs use this to look up the capabilities in the terminfo database so TERM needs to be set correctly.  But
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there is more to a correct interface than the computer knowing about the capabilities of the terminal. 

For bytes to flow from the computer to the terminal the terminal must be set to receive the bytes at the same
baud rate (bits per second) as they are sent out from the terminal.  If the terminal is set to receive at 19,200
baud and the computer sends out characters at 9600 baud, only garbage (or perhaps nothing) will be seen on
the screen.  One selects the baud rate for a terminal (as well as many other features) from the terminals
"set−up" menus at the terminal.  Most terminals have a large number of options in their "set−up" menus  (see
Terminal Set−Up (Configure) Details). The computer serial port has options also and these options must be
set up in a compatible way (see  Computer Set−Up (Configure) Details. 

5.8 Emulation

Most terminals today have more than one emulation (personality or "terminal mode").  The terminal model
numbers of terminals formerly made by DEC (Digital Equipment Corporation now Compaq) start with VT
(e.g. VT100).  Many other terminals which are not VT100 may be set up to emulate a VT100.  Wyse is a
major terminal manufacturer and most of their terminals can emulate various DEC terminals such at VT100
and VT220.  Thus if you want to, say, use a VT320 terminal you may either use a real VT320 in "native"
personality or possibly use some other terminal capable of emulating a VT320. 

The "native" personalities usually have more capabilities so, other things being equal, "native" is usually the
best to use.  But other things may not be equal.  Since the Linux console emulates a VT102 it you may want to
have a terminal emulate this (or something close to it such as VT100).  This will help insure that some
programs that may not handle terminals properly will still work OK on your terminal.  Some programs will
assume that you are using a VT012 if the program can't find a terminfo for your terminal (or can't find a
certain capability).  Thus the failure of a program to work correctly with your non−vt102 terminal may well
be your fault if you don't provide a good terminfo file for your terminal.  Using "native" and then reporting
any bugs will help discover and fix bugs which might not otherwise get detected. 

The most common type of emulation is to use a PC like it was a vt100 terminal (or the like).  Programs loaded
into the PC's memory do the emulation.  In Linux (unless you're in X Window) the PC monitor (called the
console) emulates a terminal of type "Linux" (close to vt100).  Even certain windows within X Window
emulate terminals.  See Terminal Emulation. 

5.9 The Console

On a PC, the monitor is normally the console.  It emulates a terminal of type "Linux".  One logs on to it as a
virtual terminal. See  The Console.  It receives messages from the kernel regarding booting and shutdown
progress.  One may have the messages that normally go to the console, go to the terminal.  To get this you
must manually patch the kernel, except that for kernel 2.2 (or higher) it is a "make config" option.  See  Make
a Serial Terminal the Console. 

6. Terminal Special Files such as /dev/tty 

"tty" is an abbreviation for "Teletype".  The first terminals were Teletypes (like remotely controlled
typewriters).  See subsection  Teletypes.  A list of Linux devices (the stuff in the /dev directory) may be found
in "Linux Allocated Devices" which should be included with kernel sources.  It "describes" what each device
used for in only a word or two but doesn't tell you how to use them. 
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6.1 Serial Port Terminals

The computer considers each serial port to be a "device".  It's sometimes called a terminal device since at one
time terminals were the common use for the serial port.  For each such serial port there is a special file in the
/dev (device) directory.  /dev/ttyS0 is the special file for the serial port known as COM1 in the DOS/Windows
world.  To send text to a terminal you may redirect standard output of some command−line command to the
appropriate special file.  For example typing "echo test > /dev/ttyS1" at the command prompt should send the
word "test" to the terminal on ttyS1 (COM2) provided you have write permission on /dev/ttyS1.  Similarly,
typing "cat my_file > /dev/ttyS0" will send the contents of the file my_file to COM1 (ttyS0). 

In addition to ttyS0 (/dev/ttyS0), ttyS1, ttyS2, etc. (the "S" stands for Serial port) there is also a "cua" series:
cua0, cua1, cua2, etc. cua0 is the same port as ttyS0, etc.  The "cu" of cua stands for CalloUt.  The ttyS series
are Posix compliant while using cua may permit the opening of a port that the modem control lines say is not
ready.  Starting with kernel version 2.2 cua is obsolete and a warning message is issued when you attempt to
use it (although it still works).  For the past few years it has only been included with Linux for backwards
compatibility.  A programmer can arrange things so that ttyS can behave just like cua, so cua is not really
needed. 

6.2 Pseudo Terminals

Pseudo terminals are pairs of devices such as /dev/ptyp3 and /dev/ttyp3.  There is no physical device directly
associated with either of them, not even a serial port connector.  But if a program treats ttyp3 like it was a
serial port, what is read and written to that port appears on the other member of the pair (ptyp3) which
another program uses to read and write to.  Thus two programs talk to each other via this method and one
program (on ttyp3) thinks it's talking to a serial port. 

You can't just take a pair of programs and make them talk to each other this way without modifying the
source C code.  Thus it's mainly programmers that must concern themselves with pseudo terminals and most
users don't worry about them. 

For example, if someone connects via telnet to your computer over a network, they may wind up connected
to the device /dev/ptyp2 (a pseudo terminal port).  The login process logs them in to /dev/ttyp2.  Here the login
program and the telnet program talk to each other via a "pseudo terminal".  In X Window, the terminal
emulator program, xterm (or rxvt), uses pseudo terminals.  Ham radio programs under Linux also use them.
Using certain application software it is possible to have 2 or more pseudo terminals attached to the same
physical serial port. 

For a pseudo terminal pair such as ptyp3 and ttyp3, the pty... is the master or controlling terminal and the
tty... is the slave.  There are only 16 ttyp's: ttyp0−ttypf (f is a hexadecimal digit).  To get more pairs, the 3
letters q, r, s may be used instead of p.  For example the pair ttys8, ptys8 is a pseudo terminal pair.  The master
and slave are really the same "port" but the slave is used by the application program and the master is used by
a network program (or the like) which supplies (and gets) data to/from the slave port. 

Unix98 doesn't use the above but instead uses a "pty master" which is /dev/ptmx.  This can supply a pty on
demand.  While other unix−like systems have a manual page for pseudo terminals (may be named "pty")
Linux lacks one.  A page devoted to only to pseudo terminals is needed for Linux.  There is both a Linux pty
module and a /usr/include/pty.h file. 
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6.3 The Controlling Terminal /dev/tty

/dev/tty stands for the controlling terminal (if any) for the current process.  To find out which tty's are attached
to which processes use the "ps −a" command at the shell prompt (command line). Look at the "tty" column.
For the shell process you're in, /dev/tty is the terminal you are now using.  Type "tty" at the shell prompt to
see what it is (see manual pg. tty(1)).  /dev/tty is something like a link to the actually terminal device name
with some additional features for C−programmers: see the manual page tty(4). 

6.4 /dev/ttyIN "Terminals"

N stands for an integer.  One use of these in Linux is with the ISDN driver package: isdn4linux.  The ttyIN is
something like ttySN. There is also a cuiN  which is something like cuaN.  The ttyI and cui emulate modems
and may be given modem commands. 

6.5 The Console: /dev/ttyN 

In Linux the PC monitor is usually called the console and has several device special files associated with it:
tty0, tty1, tty2, etc.  When you log in you are on tty1.  To go to tty2 (on the same screen) press down the 2
keys Alt(left)−F3.  For tty3 use Left Alt−F3, etc.  These (tty1, tty2, tty3, etc.) are called "virtual terminals".
tty0 is just an alias for the current virtual terminal and it's where messages from the system are sent.  Thus
messages from the system will be seen on the console (monitor) regardless of which virtual terminal it is
displaying. 

You may log in to different virtual terminals and thus have a few different sessions with the computer going
on at the same time.  Only the system or the root user may write to /dev/tty0 to which /dev/console is
sometimes linked.  For more info on the console see The Linux Console. 

6.6 Creating a Device with "mknod"

The /dev directory comes supplied with many device special files. If you need something that's not there you
may try to create it with the "mknod" command.  See the manual page ttys(4) for how to do this for serial
ports.  To use mknod you must know the major and minor device numbers.  You might be able to infer the
numbers you need by using the "ls −l" command in the /dev directory.  It will display the major and minor
numbers of existing special files. 

7. Some Details on How Terminals Work 

If you know almost nothing about terminals, it's suggested that you first read  Introduction and also read
Overview of How Terminals Work. 

7.1 Terminal Memory Details 

The terminal screen refreshes itself at perhaps 60 times per second from an image stored in the memory of the
terminal.  For a PC the monitor's image is stored on the video card inside the computer but for a terminal, the
equivalent of the video card is inside the terminal.  For a text terminal the storage of the image uses little
memory.  Instead of putting every dot (pixel) on the screen into memory and requiring the storage of about a
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quarter−million dots, a much more efficient method of storage is used. 

A screen−full of text may be represented inside the terminal memory by ASCII bytes, one for each character
on the screen.  An entire screen only takes about 2K ASCII bytes.  To display these characters, the terminal
must also know the bit−map (the shape) of each of the almost 100 printable ASCII characters.  With a
bit−map of a character using say 15 bytes, only about 1.5K of memory is needed for the bit−maps of all the
ASCII characters (the font).  This ASCII text and font memory is scanned so that the resulting image is put on
the screen about 60 times each second.  This is a form of shared memory where a single bit−map of a letter
such as the letter e, is shared by all of the many letter e's which appear on a screen−full of text.  Low memory
requirements meant low costs to produce monitors in the early 1980's when the cost of memory was several
thousand times higher than it is today (costing then several dollars per kilobyte). 

7.2 Early Terminals 

The first terminals were something like remotely controlled typewriters which could only "display" (print on
paper) the character stream sent to them from the computer.  The earliest models were called  Teletypes.  The
name "tty" is just an abbreviation for "Teletype".  Early terminals could do a line feed and a carriage return
just like a typewriter and ring a bell when a bell character was received.  Due to the lack of significant
capabilities this was the first type of terminal to be labeled "dumb". This type of terminal interface (using a
terminal type called "dumb") is sometimes used today when the computer can't figure out what kind of a
terminal it is communicating with. 

7.3 Escape Sequences and Control Codes (intro)

Terminals have many capabilities some of which are always present and some of which require commands
from the computer to change or activate.  To exercise all these capabilities under the control of the computer
requires that special codes be established so that the computer can tell the terminal what to do.  There are two
major type of such codes: escape sequences and control codes (control characters).  There are many times
more escape sequences than control codes. 

Control codes 

The control codes (or control characters) consist of the first 32 bytes of the ASCII alphabet.  They include the
following: carriage−return (cursor to far left), line−feed (cursor down one line), backspace, escape−character,
tab, and bell.  They do not normally show on the screen.  There is usually a command which you may give to
your terminal which will result in them being displayed when they are received by the terminal.  It's called
something like "Display Controls" or "Monitor".  If you do this then the display may look a mess since escape
sequences, which all start with the ESC (escape) control character, are no longer executed.  Words which
should appear at the top or bottom of the screen will show up in other locations.  The escape sequences to
reposition the cursor display on the screen but the cursor doesn't move to where the escape sequence says. 

Escape sequences 

Since there are not nearly enough control codes to do everything (and for some reason, not all of them are
utilized) many escape sequences are used.  They consist of the "escape" (ESC) control character followed by a
sequence of ordinary characters.  Upon receiving an escape character, the terminal examines the characters
following it so that it may interpret the sequence and carry out the intended command from the computer.
Once it recognizes the end of a valid sequence, further characters received just display on the screen (unless
they are control codes or more escape sequences).  Some escape sequences may take parameters (or
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arguments) such as the coordinates on the screen to move the cursor to.  The parameters become a part of the
escape sequence.  An  Esc Sequence List is on the web for some terminals, but it's terse. 

A list of the escape sequences for your terminal should be in the "programmers manual" for the terminal.
Except for very old terminals, there may be two or three hundred such sequences.  If you don't have a such
manual it's not easy to find them.  Some of the sequences are available on the Internet.  One link is  Esc
Sequence List.  By searching the Internet for one sequence (such as ESC[5m) you may come across a long list
of them. 

Another way to determine some of them is to find the terminfo entry (termcap) for the terminal and mentally
decode it.  See  Terminfo and Termcap (detailed) in this document and/or the  Termcap Manual on the Internet.
Unfortunately, the terminfo (termcap) for a terminal often does not list all of the escape sequences which the
terminal has available for use, but fortunately, the most important ones are usually there. 

7.4 Display Attributes & Magic Cookies 

Terminals have various methods of generating character attributes such as bold, reverse−video, underlining,
etc.  There should be no need for the user to worry about how this is done, except that it creates problems for
some old terminals and there is sometimes an option for this in the set−up menu of newer terminals. 

The magic cookie method is obsolete.  It's the simplest (and worst) method of defining attributes: Use a
certain byte for the start of an attribute and another to end that attribute.  For example, a "start underlining"
magic cookie byte is placed just before the first word to be underlined.  These extra bytes are put into the
memory of the screen page, just like character bytes that display as characters. But this might foul up the
count of the number of characters per line since non−printable magic cookie characters are intermingled with
other printable characters.  This sometimes causes problems. 

A better method which uses more memory is to assign an attribute byte (or half=byte, etc.) to each displayed
character.  This method is used by PC video cards (for text) for the common PC monitor. 

8. Special Features of Some Terminals

8.1 Color

While the common monochrome terminal is not a color terminal it may have a fixed "color" display other
than white such as green or amber.  All terminals have black (electron beam turned off = zero brightness).  A
real color terminal can change the color of the text and background to many different colors while a
monochrome terminal can only change the brightness of a fixed color. 

However, changing the brightness, etc. gives a lot of possibilities. For example, a black and white
(monochrome) terminal can have white, grey, and black by varying the brightness.  Some words can be black
on a light grey background while other are highlighted by black on white. In addition there is white on black,
underlining, and blinking. 

Color works like the color on a computer monitor or TV screen. The CRT has three colors of dots on it with
each color controlled by its own electron beam (3 beams).  Monochrome has inherently better resolution since
it doesn't depend on dots permanently fixed on the screen.  For text terminals the only use of color is to
differentiate text and this advantage is not always worth the cost of worse resolution.  Thus monochrome may
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be better since it also costs less. 

8.2 Multiple Sessions

For dual sessions the terminal has two serial ports of equal status.  Each port is connected to a serial port on a
different computer.  Thus one may log in to two different computers with each session displaying in a
split−screen window.  Alternatively, each session may run full−screen with a "hot" key (or the like) to switch
between sessions.  One could also connect to two different serial ports on the same computer and log in twice
(similar to "virtual terminals" at the console).  The program "screen" will make any ordinary terminal (single
session) connected to a single computer run two or more "sessions". 

8.3 Printer/Auxiliary Port

Many terminals have a connector on the rear for such a port.  It may be labeled as "Aux" or "Printer", etc.
Some printer ports are for parallel printers while others are for serial printers.  If a printer is connected to the
printer or auxiliary port, then pressing certain keys will print the screen.  One may also have everything that
displays on the screen go also to the printer.  If the port is an auxiliary port, one may connect this to another
computer and almost have dual sessions as above.  However, the video memory inside the terminal may not
retain both sessions so you may need to refresh the screen when switching to the other session.  There will
likely not be a hot key either but possibly a programmable function key may be programmed to do this.  There
exists various key combinations and escape sequences for controlling such a port.  See  Printer Esc. 

There is a program called vtprint which is designed to send a print job (text only) to your terminal to be
printed on a printer attached to the terminal.  It's homepage is
http://garrett.damore.org/~garrett/software/vtprint/.  It's also included in the
Debian distribution of Linux.  xprt (also in Debian) seems to do something similar, but only for X Window
terminals ?? 

8.4 Pages 

Many terminals permit the storage of more than one page in their video memory.  Sometimes the page size is
the same as the screen, but sometimes it is larger so that scrolling will reveal unseen parts of a page.  So when
one looks at a screen, there may be hidden text on the same page above or below the display.  In addition, if
there is more than just one page, there may be hidden text on these other pages. One use for pages is on
terminals that support dual sessions.  Each session may have its own page and one may switch back and forth
between them. 

Even if you only have a one−page−terminal with the page sized equal to what is displayed on the screen, you
will still see other pages of a file (etc.) as the host sends more data to the terminal.  One advantage to having
additional pages stored in the terminal memory is so that you can jump to them instantly without waiting a
second or so for them to be transmitted from the host. 

Multiple pages is supported by ncurses.  There is also a commercial program called "Multiscreen" which
supports multiple pages but probably not for Linux ??  Multiscreen is reported to be part of SCO and is
something like the virtual terminals on a Linux PC console. The Linux program "screen" makes it look like
you have multiple pages but they are stored in the computer and but you can have only one page−like
window for each running program. 
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8.5 Character−Sets 

A character−set is normally represented by a list (or table or chart) of characters along with the byte code
assigned to each character.  The codes for a byte range from 0 to 255 (00 to FF in hexadecimal).  In MS−DOS,
character−set tables are called "code−pages". You should examine such a table if you're not familiar with
them. They are sometimes included in printer and terminal manuals but also are found on the Internet. 

Many character sets include letters from foreign languages.  But they may also include special characters used
to draw boxes and other special characters. 

ASCII was the traditional English character set used on text terminals It is a 7−bit code but will usually work
OK even if your terminal is set to 8−bit mode.  In 8−bit mode with ASCII, the high order bit is always set to
zero.  Other character−sets are usually available and usually use 8−bit codes (except on very old terminals
where the only choice is ASCII).  The first half of most character−sets are the conventional 128 ASCII
characters and the second half (with the high−order bit set to 1) belong to a wide variety of character−sets.
Character sets are often ISO standards.  To get specialized character sets on a terminal, you may need to
download a soft−font for that character−set into the memory of the terminal.  Many terminals have a number
of built−in character sets (but perhaps not the one you need). 

Here are some common 8−bit character sets.  CP stands for Code Page character sets invented by IBM:
CP−437 (DOS ECS), ISO−8859−1 (Latin−1), CP−850 (Multilingual Latin 1 −−not the same as ISO Latin−1),
CP−1252 (WinLatin1 = MS−ANSI).  MS Windows uses CP−1252 (WinLatin1) while the Internet often uses
Latin−1.  There are several ISO−8859− character sets in addition to Latin−1.  These include Greek (−7),
Arabic (−6), Eastern European (−2), and a replacement for Latin−1 (−15) called Latin−9.  There are many
others.  For example, KOI8−R is more commonly used for Russian than IS0−8859−5.  Unicode is a very large
character−set where each character is represented by 2 bytes instead on just one byte. 

More info re character−sets are: 

Manual pages: iso_8859−l or latin1 (covers 8859 series), ascii• 
HOWTO's for various languages (often written in that language). See "Cyrillic" for Russian.• 
ISO−8859 Alphabet Soup More than just iso8859.  Extensive.• 
A tutorial on character code issues Clearly written.• 
Languages, Countries and Character Sets• 
Languages of the World by Computers ...• 
Links re Internationalization A long list of links (in Russian but most words in English).• 
... International Character Sets• 

Once you've found the character set name (or alpha−numeric designation) you are interested in, you may
search for more info about it on the Internet. 

Graphics (Line Drawing, etc.)

There are special characters for drawing boxes, etc.  There are also numerous non−ASCII symbols such as
bullets.  These may either be part of an 8−bit character set (such as WinLatin1 = CP−1252) or provided as a
separate font (in vt100 terminals).  Your terminfo may be set up to use them.  But if you see a row of letters
when there should be a line, it may mean that terminfo hasn't implemented them. 

You need to know the following if your graphics don't work right. The default graphic character set is the
vt−100 ANSI graphics. Otherwise the string acsc must be defined in your terminfo.  It establishes a map
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between the vt−100 graphic characters codes and the actual codes used on your terminal.  So even if your
terminal doesn't have the vt−100 graphics, it can likely still generate such graphics with some other character
set.  If terminfo has it right, this will happen automatically. 

If character sets must be switched then the terminfo variables: enacs, rmacs, and smacs should be defined.
Note acs = Alternate Character Set.  Even if the upper half of the normal character set contains the graphic
characters it may be considered a separate 7−bit character set that needs to be switched to. 

National Replacement Characters (obsolete)

These result in modified 7−bit ASCII codes.  Many West−European languages only need several additional
letters which are not in ASCII. To get them in 7−bit code, one may borrow the codes for seldom used ASCII
symbols:
@  [  \  ]  ^  `  {  \  }  ~
The symbols $ and # are sometimes used also.  So when using these replacement character sets, you are
deprived of using certain ASCII symbols since they now are used for the new non−ASCII letters.  Now that
8−bit character codes have mostly replaced 7−bit ones, it's better to use an 8−bit code which has both all the
ASCII symbols plus the non−ASCII characters for various languages. 

ISO−646 (for 1972 and later) permits this.  It specifies that the above mentioned character codes may be
borrowed, but doesn't specify which national characters are to replace them.  Some countries standardized the
replacements by registering them with ECMA. 

Many terminals exist which support these national replacement characters but you probably don't want to
implement them unless you have some old files to read.  Very old terminals may only support one language
(for the country in which they were sold).  Later terminals offered a choice of languages.  Modem terminals
are 8−bit and don't need "national replacements".  Replacement characters exist for the following
languages/countries: British, Cuba (Spanish), Dutch, Finnish, French, French Canadian, German, Hebrew,
Hungarian, Italian, Norwegian/Danish, Portuguese, Spanish, Swedish, Swiss (German). 

Here's tables for some character sets taken from Kermit and Unisys documents: 

                              Swedish     Danish
ASCII           German        Finnish      Norwegian    French

@ at−sign       section       −−−−−−−      −−−−−−−      a−grave
[ left−bracket  A−diaeresis   A−diaeresis  AE−digraph   degree
/ backslash     O−diaeresis   O−diaeresis  O−slash      c−cedilla
] right−bracket U−diaeresis   A−circle     A−circle     section
^ circumflex    −−−−−−        U−diaeresis  −−−−−−−      −−−−−−−
` accent−grave  −−−−−−        e−acute      −−−−−−−      −−−−−−−
{ left−brace    a−diaeresis   a−diaeresis  ae−digraph   e−acute
| vertical−bar  o−diaeresis   o−diaeresis  o−circle     u−grave
} right−brace   u−diaeresis   a−circle     a−circle     e−grave
~ tilde         ess−zet       u−diaeresis  −−−−−−−−     diaeresis

ASCII            Italian     Spanish

@ at−sign        section     section
[ left−bracket   degree      inverted−exclamation
/ backslash      #−pound     N−tilde
] right−bracket  e−acute     inverted−question−mark
^ circumflex     −−−−−−−     −−−−−−−
` accent−grave   u−grave     −−−−−−−
{ left−brace     a−grave     degree
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| vertical−bar   o−grave     n−tilde
} right−brace    e−grave     −−−−−−−−
~ tilde          i−grave     −−−−−−−−

8.6 Fonts

Most terminals made after the mid 1980's can accept downloaded soft−font.  This means that they can display
almost any character set provided that you can find the soft−font for it.  If you can't find the needed soft−font,
you can always create your own.  A free font editor for this is called BitFontEdit (written by the author of this
document) and (in 1998) was at
Europe:  http://www.funet.fi/pub/culture/russian/comp/cyril−term/
N. America:  http://ibiblio.unc.edu/pub/Linux/utils/terminal/ For mapping the keyboard (and screen) for use of
various fonts see Character Mapping: mapchan

8.7 Keyboards & Special Keys

Terminal keyboards often have a number of keys that one doesn't find on a PC keyboard.  Few (if any) actual
terminals will have all of these keys and most will have additional keys not listed here.  Some have a large
number of special purpose keys such as terminals made for use with cash registers.  There are often many
more key meanings than shown here since these keys often have extended meanings when used in
conjunction with other keys (such as shift and control). 

BREAK sends a very long 0 bit (space = +12 V) of duration 300 to 700 milliseconds to the host.  The
host may interpret this as an interrupt if stty has set brkint or ignore it if ignbrk is set. 

• 

NO SCROLL stops the screen from scrolling like ^S does. Depressing it again resumes scrolling.
Uses flow control signals to do this. 

• 

REPEAT if held down with an other key, forces repeated output of that other key even if the
auto−repeat option is set to off. 

• 

LINE FEED sends the line feed character ^J to the host.  Seldom used. • 
SET−UP allows the manual configuration of the terminal via menus.  Sometimes purposely disabled
by putting a block under it so it can't be pressed down.  Sometimes another key such as shift or
control must be pressed at the same time. See  Getting Into Set−Up (Configuration) Mode. 

• 

LOCAL disconnects the terminal from the host.  In local, what one types goes directly to the screen.
Useful for testing. 

• 

RETURN is the same as the "enter" key on a PC.  It usually sends a carriage return to the host which
normally get translated to a new−line character by the host's device driver.  On some terminals it may
be set up to send something else. 

• 

F1, F2, ... or PF1, PF2, ... are function keys which usually may be programmed to send out a
sequence of bytes (characters).  See Function Keys

• 

8.8 Mouse

A few text−terminals support a mouse.  When the mouse is clicked, an escape sequence is sent to the host to
tell it where the mouse is. For a mouse on VT terminals see
http://www.cs.utk.edu/~shuford/terminal/dec_vt_mouse.html These escape codes for mice are called "DEC
Locator sequences".  Do any linux applications support this ??  Which text−terminals have it ?? 
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9. Terminal Emulation (including the Console) 

9.1 Intro to Terminal Emulation

Since a PC has a screen and keyboard (as does a terminal) but also has much more computing power, it's easy
to use some of this computing power to make the PC computer behave like a text terminal.  This is one type of
terminal emulation.  Another type of terminal emulation is where you set up a real terminal to emulate another
brand/model of terminal.  To do this you select the emulation you want (called "personality" in Wyse jargon)
from the terminal's set−up menu.  This section is about the first type of emulation: emulating a terminal on a
PC. 

Much emulation software is available for use under the MS Windows OS. See  Make a non−Linux PC a
terminal This can be used to connect a Windows PC to a Linux PC (as a Text−Terminal).  Most Linux free
software can only emulate a VT100, VT102, or VT100/ANSI.  If you find out about any others, let me know.
Since most PC's have color monitors while VT100 and VT102 were designed for a monochrome monitor, the
emulation usually adds color capabilities (including a choice of colors).  Sometimes the emulation is not
100% perfect but this usually causes few problems.  For using a Mac computer to emulate a terminal see the
mini−howto: Mac−Terminal. 

9.2 Don't Use TERM Variable For Emulation

Some have erroneously thought that they could create an emulator at a Linux console (monitor) by setting the
environment variable TERM to the type of terminal they would like to emulate.  This does not work.  The
value of TERM only tells an application program what terminal you are using.  This way it doesn't need to
interactively ask you this question.  If you're at a Linux PC monitor (command line interface) it's a terminal of
type "Linux" and your can't change this. So you must set TERM to "Linux". 

If you set it to something else you are fibbing to application programs.  As a result they will incorrectly
interpret certain escape sequences from the console resulting in a corrupted interface.  Since the Linux console
behaves almost like a vt100 terminal, it could still work almost OK if you falsely claimed it was a vt100 (or
some other terminal which is something like a vt100).  It may seeming work OK most of the time but once in
a while will make a mistake when editing or the like. 

9.3 Communication (Dialing) programs

Dialing programs for making a PPP connection to the Internet don't normally include any terminal emulation.
But some other modem dialing programs (such as minicom or seyon) do.  Using them one may (for example)
dial up public libraries to use their catalogs and indexes, (or even read magazine articles).  They are also
useful for testing modems.  Seyon is only for use with X Window and can emulate Tektronix 4014 terminals. 

The communication program Kermit doesn't do terminal emulation as it is merely a semi−transparent pipe
between whatever terminal you are on and the remote site you are connected to.  Thus if you use kermit on a
Linux PC the terminal type will be "Linux".  If you have a Wyse60 connected to your PC and run kermit on
that, you will appear as a Wyse60 to the remote computer (which may not be able to handle Wyse60
terminals).  Minicom emulates a VT102 and if you use it on Wyse60 terminal the Wyse escape sequences will
get translated to VT102 escape sequences before the data goes out to the modem.  Kermit can't do this. 

Emulators exist under DOS such as telix and procomm work just as well.  The terminal emulated is often
the old VT100, VT102, or ANSI (like VT100). 
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Emulation under X Window

Xterm (obsolete ??) may be run under X Window which can emulate a VT102, VT220, or Tektronix 4014.
There is also an xterm emulation (although there is no physical terminal named "xterm").  If you don't need
the Tektronix 4014 emulation (a vector graphics terminal; see Graphics Terminals) you may use eterm.
Predecessors to eterm are rxvt and xvt. eterm supports pixmaps. 

For non−Latin alphabets, kterm is for Kanji terminal emulation (or for other non−Latin alphabets) while xcin
is for Chinese.  There is also 9term emulation.  This seems to be more than just an emulator as it has a built−in
editor and scroll−bars.  It was designed for Plan 9, a Unix−like operating system from AT&T. 

Real terminals better

Unless you are using X Window with a large display, a real terminal is often nicer to use than emulating one.
It usually costs less, has better resolution for text, and has no disk drives to make annoying noises. 

9.4 Testing Terminal Emulation

For the VT series terminals there is a test program: vttest to help determine if a terminal behaves correctly
like a vt53, vt100, vt102, vt220, vt320, vt420 etc.  There is no documentation but it has menus and is easy to
use.  To compile it run the configure script and then type "make".  It may be downloaded from:
http://ibiblio.unc.edu/pub/Linux/utils/console/

9.5 The Linux Console 

The console for a PC Linux system is normally the computer monitor in text mode.  It emulates a terminal of
type "Linux".  There is no way (unless you want to spend weeks rewriting the kernel code) to get it to emulate
anything else.  Setting the TERM environment variable to type of terminal other than "Linux" will not result
in emulating that other terminal.  It will only result in a corrupted interface since you have falsely declared
(via the TERM variable) that your "terminal" is of a type different from what it actually is.  See  Don't Use
TERM For Emulation

In some cases, the console for a Linux PC is a text−terminal.  One may recompile Linux to make a terminal
receive most of the messages which normally go to the console.  See  Make a Serial Terminal the Console. 

The "Linux" emulation of the monitor is flexible and has features which go well beyond those of the vt102
terminal which it was intended to emulate.  These include the ability to use custom fonts and easily re−map
the keyboard.  These extra features reside in the console driver software (including the keyboard driver).  The
console driver only works for the monitor and will not work for a real terminal even if it's being used for the
console.  Thus the "console driver" is really a "monitor driver".  In the early days of Linux one couldn't use a
real terminal as the console so "monitor" and "console" were once always the same thing. 

The stty commands work for the monitor−console just like it was a real terminal.  They are handled by the
same terminal driver that is used for real terminals.  Bytes headed for the screen first go thru the terminal (tty)
driver and then thru the console driver.  For the monitor some of the stty commands don't do anything (such as
setting the baud rate). You may set the monitor baud rate to any allowed value (such as a slow 300 speed) but
the actual speed of putting text on the monitor screen will not actually change.  The file /etc/ioctl.save stores
stty settings for use only when the console is in single user mode (but you are normally in multiuser−user
mode).  This is explained (a little) in the init man page. 
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Many commands exist to utilize the added features provided by the console−monitor driver.  Real terminals,
which use neither scan codes nor VGA cards, unfortunately can't use these features.  To find out more about
the console see the Keyboard−and−Console−HOWTO.  Also see the various man pages about the console
(type "man −k console"). Unfortunately, much of this documentation is outdated. 

9.6 Emulation Software

Emulators often don't work quite right so before purchasing software you should try to throughly check out
what you will get. 

Make a Linux PC a terminal

Unless you want to emulate the standard vt100 (or close to it). There doesn't seem to be much free terminal
emulation software available for Linux.  The free programs minicom and seyon (only for X Window) can
emulate a vt100 (or close to it).  Seyon can also emulate a Tektronix 4014 terminal. 

The terminal emulator "Procomm" (which is from Dos), can be used on a Linux PC if you run dosemu to
emulate Dos.  For details see:  http://solarflow.dyndns.org/pcplus/. 

There's a specialized Linux distribution: Serial Terminal Linux.  It will turn a PC to into a minicom−like
terminal.  It's small (fits on a floppy) and will not let you use the PC for any other purpose (when it's running).
See  http://members.wri.com/johnnyb/seriallinux/.  It will let you have more than one session running (similar
to virtual terminals), one for each serial port you have. 

TERM (non−free from Century Software)  http://www.ecc400.com/censoft/termunix.html can emulate
Wyse60, 50; VT 220, 102, 100, 52: TV950, 925, 912; PCTERM; ANSI; IBM3101; ADM−1l; WANG 2110.
Block mode is available for IBM and Wyse.  It runs on a Linux PC. 

Make a non−Linux PC a terminal 

Emulators exist which run on non−Linux PCs.  They permit you to use a non−Linux−PC as a terminal
connected to a Linux−PC.  Under DOS there is telix and procomm.  Windows comes with
"HyperTerminal" (formerly simply called "Terminal" in Windows 3.x and DOS).  Competing with this is
"HyperTerminal Private Edition"  http://www.hilgraeve.com/htpe/index.html which is non−free to business.  It
can emulate vt−220.  Turbosoft's TTWin can emulate over 80 different terminals under Windows.  See
http://www.ttwin.com/ or  http://www.turbosoft.com.au/ (Australia). See also  Reflection

For the Mac Computer there is emulation by Carnation Software
http://www.carnationsoftware.com/carnation/HT.Carn.Home.html

One place to check terminal emulation products is Shuford's site, but it seems to lists old products (which
may still work OK).  The fact that most only run under DOS (and not Windows) indicates that this info is
dated.  See  http://www.cs.utk.edu/~shuford/terminal/term_emulator_products.txt. 

10. Flow Control (Handshaking) 

Flow control (= handshaking = pacing)  is to prevent too fast of a flow of bytes from overrunning a terminal,
computer, modem or other device.  Overrunning is when a device can't process what it is receiving quickly

 Text−Terminal−HOWTO 

9.6 Emulation Software 29

http://solarflow.dyndns.org/pcplus/
http://members.wri.com/johnnyb/seriallinux/
http://www.ecc400.com/censoft/termunix.html
http://www.hilgraeve.com/htpe/index.html
http://www.ttwin.com/
http://www.turbosoft.com.au/
http://www.wrq.com/
http://www.carnationsoftware.com/carnation/HT.Carn.Home.html
http://www.cs.utk.edu/~shuford/terminal/term_emulator_products.txt


enough and thus loses bytes and/or makes other serious errors.  What flow control does is to halt the flow of
bytes until the terminal (for example) is ready for some more bytes.  Flow control sends its signal to halt the
flow in a direction opposite to the flow of bytes it wants to stop.  Flow control must both be set at the terminal
and at the computer. 

There are 2 types of flow control: hardware and software (Xon/Xoff or DC1/DC3).  Hardware flow control
uses dedicated signal wires such as RTS/CTS or DTR/DSR while software flow control signals by sending
DC1 or DC3 control bytes in the normal data wires.  For hardware flow control, the cable must be correctly
wired. 

The flow of data bytes in the cable between 2 serial ports is bi−directional so there are 2 different flows (and
wires) to consider: 

Byte flow from the computer to the terminal1. 
Byte flow from the terminal keyboard to the computer.2. 

10.1 Why Is Flow Control Needed ?

You might ask: "Why not send at a speed slow enough so that the device will not be overrun and then flow
control is not needed?"  This is possible but it's usually significantly slower than sending faster and using flow
control.  One reason for this is that one can't just set the serial port baud rate at any desired speed such as
14,500, since only a discrete number of choices are available.  The best choice is to select a rate that is a little
higher than the device can keep up with but then use flow control to make things work right. 

If one decides to not use flow control, then the speed must be set low enough to cope with the worst case
situation.  For a terminal, this is when one sends escape sequences to it to do complex tasks that take more
time than normal.  In the case of a modem (with data compression but no flow control) the speed from the
computer to the modem must be slow enough so that this same speed is usable on the phone line, since in the
worst case the data is random and can't be compressed.  If one failed to use flow control, the speed (with data
compression turned on) would be no faster than without using any compression at all. 

Buffers are of some help in handling worst case situations of short duration.  The buffer stores bytes that come
in too fast to be processed at once, and saves them for processing later. 

10.2 Padding 

Another way to handle a "worst case" situation (without using flow control or buffers) is to add a bunch of
nulls (bytes of value zero) to escape sequences.  Sometimes DEL's are used instead provided they have no
other function.  See  Recognize Del. 

The escape sequence starts the terminal doing something, and while the terminal is busy doing it, it receives a
bunch of nulls which it ignores.  When it gets the last null, it has completed its task and is ready for the next
command.  This is called null padding.  These nulls formerly were called "fill characters".  These nulls are
added just to "waste" time, but it's not all wasted since the terminal is usually kept busy doing something else
while the nulls are being received.  It was much used in the past before flow control became popular.  To be
efficient, just the right amount of nulls should be added and figuring out this is tedious.  It was often done by
trial and error since terminal manuals are of little or no help.  If flow control doesn't work right or is not
implemented, padding is one solution.  Some of the options to the stty command involve padding. 
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10.3 Overrunning a Serial Port

One might wonder how overrunning is possible at a serial port since both the sending and receiving serial
ports involved in a transmission of data bytes are set for the same speed (in bits/sec) such as 19,200.  The
reason is that although the receiving serial port electronics can handle the incoming flow rate, the
hardware/software that fetches and processes the bytes from the serial port sometimes can't cope with the
high flow rate. 

One cause of this is that the serial port's hardware buffer is quite small.  Older serial ports had a hardware
buffer size of only one byte (inside the UART chip).  If that one received byte of data in the buffer is not
removed (fetched) by CPU instructions before the next byte arrives, that byte is lost (the buffer is overrun).
Newer UART's, namely most 16550's, have 16−byte buffers (but may be set to emulate a one−byte buffer)
and are less likely to overrun.  It may be set to issue an interrupt when the number of bytes in its buffer
reaches 1, 4, 8, or 14 bytes.  It's the job of another computer chip (usually the main CPU chip for a computer)
to take these incoming bytes out of this small hardware buffer and process them (as well as perform other
tasks). 

When contents of this small hardware receive buffer reaches the specified limit (one byte for old UART'S) an
interrupt is issued. Then the computer interrupts what it was doing and software checks to find out what
happened.  It finally determines that it needs to fetch a byte (or more) from the serial port's buffer.  It takes
these byte(s) and puts them into a larger buffer (also a serial port buffer) that the kernel maintains in main
memory.  For the transmit buffer, the serial hardware issues an interrupt when the buffer is empty (or nearly
so) to tell the CPU to put some more bytes into it to send out. 

Terminals also have serial ports and buffers similar to the computer. Since the flow rate of bytes to the
terminal is usually much greater than the flow in the reverse direction from the keyboard to the host
computer, it's the terminal that is most likely to suffer overrunning. Of course, if you're using a computer as a
terminal (by emulation), then it is likewise subject to overrunning. 

Risky situations where overrunning is more likely are:  1. When another process has disabled interrupts (for a
computer).  2. When the serial port buffer in main (or terminal) memory is about to overflow. 

10.4 Stop Sending

When its appears that the receiver is about to be overwhelmed by incoming bytes, it sends a signal to the
sender to stop sending.  That is flow control and the flow control signals are always sent in a direction
opposite to the flow of data which they control (although not in the same channel or wire).  This signal may
either be a control character (^S = DC3 = Xoff) sent as an ordinary data byte on the data wire (in−band
signalling), or a voltage transition from positive to negative in the dtr−to−cts (or other) signal wire
(out−of−band signalling).  Using Xoff is called "software flow control" and using the voltage transition in a
dedicated signal wire (inside the cable) is called hardware flow control. 

10.5 Keyboard Lock 

With terminals, the most common case of "stop sending" is where the terminal can't keep up with the
characters being sent to it and it issues a "stop" to the PC.  Another case of this is where someone presses
control−S.  Much less common is the opposite case where the PC can't keep up with your typing speed and
tells the terminal to stop sending.  The terminal "locks" its keyboard and a message or light should inform you
of this.  Anything you type at a locked keyboard is ignored.  When the PC catches up on it's work, then the
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keyboard should unlock.  When it doesn't, there is likely some sort of deadlock going on. 

Another type of keyboard lock happens when a certain escape sequence (or just the ^O control character for
Wyse 60) is sent to the terminal.  While the previous type of lock is done by the serial driver, this type of lock
is done by the hardware of a real terminal. It's a catch−22 situation if this happens since you can't type any
commands to escape out of this lock.  Going into setup and resetting might work (but it failed on my Wyse 60
and I had to cycle power to escape).  One could also send an "unlock keyboard" escape sequence from another
terminal. 

The term "locked" is also sometimes used for the common case of where the computer is told to stop sending
to a terminal.  The keyboard is not locked so that whatever you type goes to the computer.  Since the computer
can't send anything back to you, characters you type don't display on the screen and it may seem like the
keyboard is locked. Scrolling is locked (scroll lock) but the keyboard is not locked. 

10.6 Resume Sending

When the receiver has caught up with its processing and is ready to receive more data bytes it signals the
sender.  For software flow control this signal is the control character ^Q = DC1 = Xon which is sent on the
regular data line.  For hardware flow control the voltage in a signal line goes from negative (negated) to
positive (asserted). If a terminal is told to resume sending the keyboard is then unlocked and ready to use. 

10.7 Hardware Flow Control (RTS/CTS etc.) 

Some older terminals have no hardware flow control while others used a wide assortment of different pins on
the serial port for this. For a list of various pins and their names see  Standard Null Modem Cable Pin−out.
The most popular pin to use seems to be the DTR pin (or both the DTR pin and the DSR pin). 

RTS/CTS, DTR, and DTR/DSR Flow Control

Linux PC's use RTS/CTS flow control, but DTR/DSR flow control (used by some terminals) behaves
similarly.  DTR flow control (in one direction only and also used by some terminals) is only the DTR part of
DTR/DSR flow control. 

RTS/CTS uses the pins RTS and CTS on the serial (EIA−232) connector. RTS means "Request To Send".
When this pin stays asserted (positive voltage) at the receiver it means: keep sending data to me.  If RTS is
negated (voltage goes negative) it negates "Request To Send" which means: request not to send to me (stop
sending).  When the receiver is ready for more input, it asserts RTS requesting the other side to resume
sending.  For computers and terminals (both DTE type equipment) the RTS pin sends the flow control signal
to the CTS pin (Clear To Send) on the other end of the cable.  That is, the RTS pin on one end of the cable is
connected to the CTS pin at the other end. 

For a modem (DCE equipment) it's a different scheme since the modem's RTS pin receives the signal and its
CTS pin sends.  While this may seem confusing, there are valid historical reasons for this which are too
involved to discuss here. 

Terminals usually have either DTR or DTR/DSR flow control.  DTR flow control is the same as DTR/DSR
flow control but it's only one−way and the DSR pin is not used.  For DTR/DSR flow control at a terminal, the
DTR signal is like the signal sent from the RTS pin and the DSR pin is just like the CTS pin. 
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Connecting up DTR or DTR/DSR Flow Control

Some terminals use only DTR flow control.  This is only one−way flow control to keep the terminal from
being overrun.  It doesn't protect the computer from someone typing too fast for the computer to handle it.  In a
standard null modem (crossover) cable the DTR pin at the terminal is connected to the DSR pin at the
computer.  But Linux doesn't support DTR/DSR flow control (although drivers for some multiport boards
may support DTR/DSR flow control.)  A way around this problem is to simply wire the DTR pin at the
terminal to connect to the CTS pin at the computer and set RTS/CTS flow control (stty crtscts).  The fact that
it's only one way will not affect anything so long as the host doesn't get overwhelmed by your typing speed
and drop RTS in a vain attempt to lock your keyboard.  See  Keyboard Lock.  For DTR/DSR flow control (if
your terminal supports this two−way flow control) you do the above. But you also connect the DSR pin at the
terminal to the RTS pin at the computer.  Then you are protected if you type too fast. 

Old RTS/CTS handshaking is different

What is confusing is that there is the original use of RTS where it means about the opposite of the previous
explanation above.  This original meaning is: I Request To Send to you.  This request was intended to be sent
from a terminal (or computer) to a modem which, if it decided to grant the request, would send back an
asserted CTS from its CTS pin to the CTS pin of the computer: You are Cleared To Send to me.  Note that in
contrast to the modern RTS/CTS bi−directional flow control, this only protects the flow in one direction:
from the computer (or terminal) to the modem. 

For older terminals, RTS may have this meaning and goes high when the terminal has data to send out.  The
above use is a form of flow control since if the modem wants the computer to stop sending it drops CTS
(connected to CTS at the computer) and the computer stops sending. 

Reverse Channel

Old hard−copy terminals may have a reverse channel pin (such as pin 19) which behaves like the RTS pin in
RTS/CTS flow control.  This pin but will also be negated if paper or ribbon runs out.  It's often feasible to
connect this pin to the CTS pin of the host computer. There may be a dip switch to set the polarity of this
signal. 

10.8 Is Hardware Flow Control Done by Hardware ?

Some think that hardware flow control is done by hardware but only a small part of it is done by hardware.
Most of it is actually done by your operating system software.  UART chips and associated hardware usually
know nothing at all about hardware flow control. When a hardware flow control signal is received (due to the
signal wire flipping polarity) the hardware gives an electrical interrupt signal to the CPU.  However, the
hardware has no idea what this interrupt means.  The CPU stops what it was doing and jumps to a table in
main memory that tells the CPU where to go to find a program which will find out what happened and
determine what to do about it.  In this case this program stops the outgoing flow of bytes. 

But even before this program stops the flow,  it was already stopped by the interrupt which interrupted the
work of the CPU.  This is one reason why hardware flow control stops the flow faster.  It doesn't need to wait
for a program to do it.  But if that program didn't command that the flow be stopped, the flow would resume
once that program exited.  So the program is essential to stop the flow even though it is not the first to actually
stop the flow.  After the interrupt happens any bytes (up to 16) which were already in the serial port's
hardware transmit buffer will still get transmitted.  So even with hardware flow control the flow doesn't
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instantly stop. 

Using software flow control requires that each incoming byte be checked to see if it's an "off" byte.  These
bytes are delayed by passing thru the 16−byte receive buffer.  If the "off" byte was the first byte into this
buffer, there could be a wait while 15 more bytes were received.  Then the 16 bytes would get read and the
"off" byte found.  This extra delay doesn't happen with hardware flow control. 

10.9 Obsolete ?? ETX/ACK or ENQ/ACK Flow Control

This is also software flow control and requires a device driver that knows about it.  Bytes are sent in packets
(via the async serial port) with each packet terminated by an ETX (End of Text) control character.  When the
terminal gets an ETX it waits till it is ready to receive the next packet and then returns an ACK
(Acknowledge).  When the computer gets the ACK, it then send the next packet.  And so on. This is not
supported by Linux ??  Some HP terminals use the same scheme but use ENQ instead of ETX. 

11. Physical Connection 

11.1 Introduction

A terminal may be connected to its host computer either by a direct cable connection, via a modem, or via a
terminal server.  The flow of data may be either a direct sequence of bytes (such as from a serial port) or
packets on a network (such as TCP/IP). 

11.2 Multiport I/O Cards (Adapters)

Additional serial cards may be purchased which have many serial ports on them called "multiport boards".
These boards are not covered in this HOWTO but there is a list of some of them (with URLs) in the
Serial−HOWTO. 

11.3 Direct Serial Cable Connection.

The simplest way to connect a terminal to a host computer is via a direct connection to a serial port on the
computer.  You may also use some the info in this section for connecting one computer to another (via the
serial port).  Most PC's come with a couple of serial ports, but one is usually used by a mouse.  For the
EIA−232 port, you need a null modem cable that crosses over the transmit and receive wires.  In ethernet
terminology it would be called a "crossover cable" (but the ethernet cable will not work for the serial port).  If
you want hardware flow control, you will probably use the DTR pin (or both the DTR and DSR pins). 

Make sure you have the right kind of cable.  A null modem cable bought at a computer store may do it (if it's
long enough), but it probably will not work for hardware flow control.  Such a cable may be labeled as a serial
printer cable.  Only larger computer stores are likely to stock such cables.  A "modem cable" will not work
since the wires go straight thru (and don't cross over).  See  Buy or Make your own cable.  Make sure you are
connecting to your PC's serial port at the male DB25 or the DB9, and not to your parallel port (female DB25). 
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Null Modem cable pin−out (3, 4, or 5 conductor)

These 3 diagrams are for real text−terminals.  But you could use them to connect up 2 PCs if you substitute
RTS for DTR and CTS for DSR.  (Don't use 4−conductors for PC−to−PC).  For terminals, if you only have
DTR flow control (one−way) you may eliminate the RTS−to−DSR wire.  If you have no hardware flow
control, then you may also eliminate the CTS−to−DTR wire.  Then if you have 2@ twisted pairs, you may
then use 2 wires for signal ground per  A Kludge using Twisted−Pair Cable.  For a DB25 connector on your
PC, you need: 

  PC male DB25                          Terminal DB25
    TxD   Transmit Data       2 −−> 3       RxD   Receive Data
    RxD   Receive Data        3 <−− 2       TxD   Transmit Data
    SG    Signal Ground       7 −−− 7       SG    Signal Ground
    CTS   Clear To Send       5 <−−20       DTR   Data Terminal Ready
    RTS   Request To Send     4 −−> 6       DSR   Data Set Ready

If you have a DB9 connector on your PC, try the following: 

        PC DB9                                 Terminal DB25
    RxD   Receive Data        2 <−− 2            TxD   Transmit Data
    TxD   Transmit Data       3 −−> 3       RxD   Receive Data
    SG    Signal Ground       5 −−− 7       SG    Signal Ground
    CTS   Clear To Send       8 <−−20       DTR   Data Terminal Ready
    RTS   Request To Send     7 −−> 6       DSR   Data Set Ready   **

If you have a DB9 connector on both your serial port and terminal: 

        PC DB9                                 Terminal DB9
    RxD   Receive Data        2 <−− 3            TxD   Transmit Data
    TxD   Transmit Data       3 −−> 2       RxD   Receive Data
    SG    Signal Ground       5 −−− 5       SG    Signal Ground
    CTS   Clear To Send       8 <−− 4       DTR   Data Terminal Ready
    RTS   Request To Send     7 −−> 6       DSR   Data Set Ready   **

The above don't have modem control lines so be sure to give a "local" option to getty (which is equivalent to
"stty clocal").  Also if you need hardware flow control it must be enabled at your computer (use a −h flag with
agetty) ( equivalent to "stty crtscts" ). 

Standard Null Modem cable pin−out (7 conductor)

The following 3 diagrams show full "standard" null modem cables. One that you purchase may be wired this
way.  Another pinout is for 20 and 6 to cross over and to have 8 cross over to both 4 and 5.  This will not
provide hardware flow control (RTS/CTS) for directly connected computers.  Both of the above will work for
terminals using software (Xon/Xoff) flow control (or no flow control).  None of these cables will work for
terminal hardware flow control since most real terminals support DTR or DTR/DSR flow control
(handshaking) but Linux doesn't yet (2000). 

PC male DB25                            Terminal DB25
DSR   Data Set Ready        6
                            |
DCD   Carrier Detect        8 <−− 20    DTR   Data Terminal Ready
TxD   Transmit Data         2 −−> 3     RxD   Receive Data
RxD   Receive Data          3 <−− 2     TxD   Transmit Data
RTS   Request To Send       4 −−> 5     CTS   Clear To Send
CTS   Clear To Send         5 <−− 4     RTS   Request To Send
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SG    Signal Ground         7 −−− 7     SG    Signal Ground
DTR   Data Terminal Ready  20 −−> 8     DCD   Carrier Detect
                                  |
                                  6     DSR   Data Set Ready

Alternatively, a full DB9−DB25 null modem cable (will not  work with terminal hardware handshaking; see
above): 

PC DB9                                  Terminal DB25
RxD   Receive Data          2 <−− 2     TxD   Transmit Data
TxD   Transmit Data         3 −−> 3     RxD   Receive Data
                                  6     DSR   Data Set Ready
                                  |
DTR   Data Terminal Ready   4 −−> 8     DCD   Carrier Detect
SG    Signal Ground         5 −−− 7     SG    Signal Ground
DCD   Carrier Detect        1
                            |
DSR   Data Set Ready        6 <−− 20    DTR   Data Terminal Ready
RTS   Request To Send       7 −−> 5     CTS   Clear To Send
CTS   Clear To Send         8 <−− 4     RTS   Request To Send
(RI   Ring Indicator        9 (not needed)

(Yes, the pins 2 and 3 really do have opposite meanings for DB9 and DB25 connectors!) 

Here's how to null−modem connect two DB9's together (but DTR flow control will not work): 

PC DB9                                  DB9
RxD   Receive Data          2 <−− 3     TxD   Transmit Data
TxD   Transmit Data         3 −−> 2     RxD   Receive Data
                                  6     DSR   Data Set Ready
                                  |
DTR   Data Terminal Ready   4 −−> 1     DCD   Carrier Detect
GND   Signal Ground         5 −−− 5     GND   Signal Ground
DCD   Carrier Detect        1
                            |
DSR   Data Set Ready        6 <−− 4     DTR   Data Terminal Ready
RTS   Request To Send       7 −−> 8     CTS   Clear To Send
CTS   Clear To Send         8 <−− 7     RTS   Request To Send
RI   Ring Indicator         9 (not used)

Using the above 2 connections provide full modem control signals and seemingly allow one to set "stty
−clocal".  Then one must turn on the terminal first (asserts DTR) before the port may be opened in a normal
manner by getty, etc.  But there is likely to be trouble if you fail to turn on the terminal first (see  Getty
Respawning Too Rapidly).  For this reason one should use "stty clocal" which is the default (ignores modem
control lines) and the additional wires in these cables then serve no useful purpose. 

In olden days when it may not have been this easy to ignore modem control signals etc, the following "trick"
was done for cables that lacked conductors for modem control: on your computer side of the connector,
connect RTS and CTS together, and also connect DSR, DCD and DTR together.  This way, when the
computer needs a certain handshaking signal to proceed, it will get it (falsely) from itself. 

Overcoming length limitations 

A cable longer than a 50 feet or so may not work properly at high speed.  Much longer lengths sometimes
work OK, especially if the speed is low and/or the cable is a special low−capacitance type and/or the
electronics of the receiving end are extra sensitive.  It is claimed that under ideal conditions at 9600 baud,

 Text−Terminal−HOWTO 

 Overcoming length limitations 36



1000 feet works OK.  One way to cover long distances is to install 2@ line drivers near each serial port so as
to convert unbalanced to balanced (and conversely) and then use twisted pair cabling.  But line drivers are
expensive. 

Another way to increase the distance is to try to cancel out much of the magnetic field created by the currents
in the transmit and receive data wires: TxD and RxD.  To do this, ground return lines,  which have current
which is roughly equal (but in the opposite direction) are placed next to the the transmit and received wires.
Twisted pair has the best cancellation.  Some DEC terminals have two signal ground wires for this purpose.
For example, one pair would be TxD and SG(TxD) where SG is signal ground.  If you use ribbon cable,
insure that the TxD and SG(TxD) wires are right next to each other. Similarly for the RxD. 

If there is only one signal ground wire provided by both the PC and the terminal, it may be split into two
wires in a twisted pair cable for this purpose.  You might think that return currents will be equally split
between the two signal ground wires.  This would cancel out only about half of the magnetic field.  But it's
better cancellation than this because return current prefers the path of least impedance.  The return path of a
data signal (such as TxD) has the lowest impedance (due to lower inductance) if it flows back in the same
twisted pair.  Although I've haven't seen any experimental test results for this method, it should allow longer
cable lengths. 

Hardware Flow Control cables

If you expect to use hardware flow control (handshaking) you will likely need to make up your own cable (or
order one made).  Of course, if the connecters on the ends of a used cable remove, you might rewire it.  See
Installing DB Connectors. You will need to determine whether or not the terminal uses the DTR pin for this,
and if not, what pin (or pins) it uses.  The set−up menus may give you a clue on this since there may be an
option for enabling "DTR handshaking" (or flow control) which of course implies that it uses the DTR pin.  It
may also use the DSR pin.  See  Hardware Flow Control for a detailed explanation of it.  Older terminals may
have no provision for hardware flow control. 

Cable tips

The normal "straight thru" cable will not work unless you are using it as an extension cable in conjunction
with either a null modem (crossover) cable or a null modem adapter.  Make sure that the connectors on the
cable ends will mate with the connectors on the hardware.  One may use telephone cable which is at least
4−conductor (and possibly twisted pair).  Shielded, special low−capacitance cable computer cable is best. 

A kludge using twisted−pair cable 

See also  Overcoming Length Limitations. Although none of the EIA−232 signals are balanced for twisted
pair one may attempt to use twisted−pair cable with it.  Use one pair for transmit and another for receive.  To
do this connect signal ground to one wire in each of these 2 pair.  Only part of the signal ground current flows
in the desired wire but it may help.  Due to the lower inductance of the twisted pair circuit (as compared to
ground return current by some other path)  more return (ground) current will confine itself to the desired
twisted pair than one would expect from only resistance calculations.  This is especially true at higher
frequencies since inductive impedance increases with frequency.  The rectangular wave of the serial port
contains high frequency harmonics. 
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Cable grounding

Pin 1 (of a DB25) should be chassis ground (also earth ground) but on cheap serial ports it may not even be
connected to anything.  A 9−pin connector doesn't even have a chassis ground.  The signal ground is pin 7 and
is usually grounded to chassis ground.  This means that part of the signal current will flow thru the ground
wires of the building wiring (undesirable).  Cable shields are supposed to be only grounded at one end of the
cable, but it may be better to ground both ends since it's better to have current in the shield than in the
building wiring ?? 

11.4 Modem Connection

By using a terminal−modem combination (without a computer) one may dial out to other computers.  Up to
the mid 1990s in the US, there were many "bulletin boards" one could dial out to.  Some even provided
connections to the Internet.  But bulletin boards lost out in favor of the Internet. 

Dialing out from a terminal

Instead of connecting a terminal (or computer emulating a terminal) directly to a host computer using a cable
it may be connected to the host via a telephone line (or dedicated private line) with a modem at each end of
the line.  The terminal (or computer) will usually dial out on a phone line to a host computer. 

Most people use a PC and modem for dialing out.  The PC could have a terminal connected to a serial port
and the person at the terminal may dial out using the PC.  Connecting a real terminal directly to an external
modem is more difficult since the real terminal isn't very intelligent and doesn't give as much feedback to the
user.  For dialing out, many terminals can store one or more telephone numbers as messages which may be
"set−up" into them and are sent out to the modem by pressing certain function keys.  Many modems can also
store phone numbers.  The modem initiation sequence must precede the telephone number.  When the
outgoing call is answered by another modem at the other end of the phone line, the the host computer on this
modem may run a getty program to enable you to log in. 

Terminal gets dialed into

It's common for a computer running Linux to get dialed into.  The caller gets a login prompt and logs in.  At
first glance, it may seem strange how a dumb terminal (not connected to any computer) could accept an
incoming call, but it can.  One possible reason for doing this is to save on phone bills where rates are not
symmetric.  Your terminal needs to be set up for dial−in: Set the modem at your terminal for automatic
answer (Register S0 set to 2 will answer on the 2nd ring).  You turn on the terminal and modem before you
expect a call and when the call comes in you get a login prompt and log in. 

The host computer that dials out to your terminal needs to do something quite unusual.  As soon as your
modem answers, it needs to run login (getty).  A host may do this by running the Linux program "callback"
sometimes named "cb".  Callback is for having computer A call computer B, and then B hangs up and calls A
back.  This is what you want if you are using computer A to emulate a terminal.  For the case of a real terminal
this may be too complex a task so the host may utilize only the "back" part of the callback program.  The
setup file for callback must be properly configured at the host.  Callback makes the call to the terminal and
then has mgetty run a login on that port. Mgetty by itself (as of early 1998) is only for dial−in calls but there
is work being done to incorporate callback features into it and thus make it able to dial−out.  As of early 1999
it didn't seem to have been done. 
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11.5 Telnet

Telnet is a program which lets a text terminal (or a PC console) connect to a host computer over a network.
No serial ports are used for the telnet connection.  Of course if you are sitting at a real text terminal there is a
serial connection to your own host.  But when you run telnet, your host connects to another host via
serial−less telnet. 

Telnet uses tcp/ip packets over various networks: the Internet, LANs, etc.  You run telnet (as a client) and it
connects to a telnet server on another computer on a network.  Then you get a login prompt and log in just as
if you were directly connected via a cable to a serial port. 

11.6 Terminal Server Connection

What is a terminal server ?

A terminal server is something that serves to connect a bunch of terminals to a host computer(s) via a
network.  Today this server is often located nearby or inside the host computer.  If you directly connect some
terminals to a PC or connect them via dial−up modems thru serial ports at each end, you don't need a terminal
server. 

But if the terminals are connected to the host over a network, then you may need a terminal server to make
the serial−to−network conversions.  This is useful for devices such as printers and terminals that have no
built−in network support.  However the definition of "terminal server" has broadened to the case where all
data flows entirely over a network (except of course within the computer itself) and where no serial ports are
involved.  The term "terminal" may include a thin client type terminal with a GUI.  The network usually uses
tcp/ip and/or ppp but other protocols (including protocol conversion) are sometimes supported. 

One way to connect a "terminal" (your PC console) to a network is to run telnet on your PC (assuming your
PC has a network connection).  At one time, terminal servers were dedicated hardware which could be used
only as terminal servers.  Today a PC can simultaneously serve as a terminal server thereby serving many
terminals. 

Today, most terminal servers serve thin client terminals rather than text−terminals.  The "Linux Terminal
Server Project" is an example.  But it can also serve text terminals using telnet.  Such a text−terminal is likely
to be just a PC monitor emulating a terminal of type "Linux".  The terminal server is just software running on
the host computer.  Telnet server software is like a simple terminal server. 

A host that only has directly connected terminals (or modem connections without tcp/ip or ppp) is sometimes
called a "terminal server".  Although it's doing the same job as a real terminal server, it strictly speaking is not
a terminal server. 

Evolution of the "terminal server"

Originally a terminal server served real text−terminals via the serial port.  A server for real text−terminals
would have a number of serial ports.  The user would log in to the server and then get connected via tcp/ip,
etc. to a host computer where s/he would login a second time again.  Sometimes the first login would be
automatic, or perhaps there would be a choice given the user as to what host computer (or printer) to connect
to (or what protocol to use). 
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The use of text−terminals declined as the PC replaced mainframes. But the PC could emulate a terminal
(using say minicom (Linux) or (hyper)terminal for MS).  One could could then dial−out via a modem to a
bulletin−board or the like.  There would be a bank of modems to accept such calls and each modem would be
connected to a serial port.  The serial port could either be on a multiport card or on a dedicated terminal
server.  Note that in both the above cases there is no client software.  It's not a client−server model. 

When the Internet became popular, one would run the PPP protocol on the phone line and still go thru a
modem and "terminal server" at the ISP.  This server would handle PPP and ultimately connect one to the
Internet.  But the PC was no longer emulating a text terminal since browser images were being displayed.
Today with ISPs getting only digital signals from the phone company, they don't need real modems anymore.
So what was a "terminal server" evolved into a "remote access server".  It's infrequently been called a "digital
terminal server".  Note that 56k modem service requires that an ISP have a digital connection to the phone
company. 

With remote access servers, instead of many individual telephone line cables connected to a terminal server,
one now finds just a few cables with many digitized telephone calls on each cable (multiplexed).  The
multitude of connectors needed for large numbers of terminals or modems is no longer present on a remote
access server and thus the successor to this type of terminal server can't readily serve text−terminals anymore. 

More recently with the advent of thin clients terminals, the term "terminal server" was revived to apply to the
hosts that served the thin clients.  Both MS Windows and Linux can serve thin clients. 

11.7 Connector and Adapter Types

A connector is more−or−less permanently attached to the end of a cable or to a hardware unit.  There are two
basic types of connectors used in serial communications: 1. DBxx with pins (such as DB25) and 2. modular
telephone−style connectors. 

An adapter looks about like a connector but it has two ends.  It is just like a cable that is so short that there is
no cable part left at all −−just different connectors on each end is all that remains.  The adapter just plugs in
on each side.  It allows two incompatible connectors to mate with each other by going in between them.
Sometimes the purpose of the adapter is to interchange wires. Obviously, one may use a special cable
(perhaps homemade) as a substitute for an adapter. 

Sex of connector/adapters

Connectors (or one side of adapters) are either male or female. The connectors that have pins are male and
the ones that have sockets (sometimes also called pins) are female.  For modular connectors, the ones with
exposed contacts are plugs while the ones with internal contacts (not easy to see) are jacks.  Plugs are male;
jacks are female. 

Types of adapters

There are three basic types of adapters: null modem, gender changers and port adapters.  Some adapters
perform more than one of these three functions. 

null modem adapter: Reroutes wires.  Like a null modem cable.• 
gender changer: Changes the sex of a cable end.  Two connectors of the same sex can now connect
(mate) with each other.

• 

port adapter: Goes from one type of connector to another (DB9 to DB 25, etc.)• 
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DB connectors 

(For how to install a DB connector on the ends of a cable see  Installing DB Connectors.)  These come in 9 or
25 pins.  The EIA−232 specs. call for 25 pins but since most of these pins are not used on ordinary serial
ports, 9 pins is sufficient. See  DB9−DB25 for the pin−out. The pins are usually numbered if you look closely
enough or use a magnifying glass. 

RJ modular connectors 

RJ means Registered Jack.  These look like modern telephone connectors but are sometimes not compatible
with telephone connectors. See also  Installing RJ Connectors. For use with serial ports they may be 6 or 8
conductor.  A few are 10−conductor but may not officially belong to the RJ series. 

6−conductors: RJ11/14, RJ12,  and MMJ

RJ11 are all the same size but may have  2, 4, or 6 conductors. If it has two conductors, it should be called a
RJ11.  If it has 4 conductors, some call it a RJ14.  If it has 6 conductors, many call it a RJ12 (but a RJ12 per
the phone company has only 4 conductors). Seems confusing but they are all the same size and differ mainly
by the number of conductor contacts present. 

A look−alike (almost) is a MMJ connector (6−conductor) used on later model VT (and other) terminals.  It's
sometimes referred to as a DEC−423 or a DEC RJ11.  MMJ has an offset tab and is not compatible with RJ
ones (unless the tab is cut off).  However, some connectors have been made that are compatible with both
MMJ and the RJ ones. Since MMJ connectors are both hard to find and may be expensive some people have
forced a RJ (6 conductor) to fit MMJ by filing off the offset tab with a file. 

The MMJ (DEC) pinout is: 1−DTR, 2−TxD, 3−TxD_Gnd, 4−RxD_Gnd, 5−RxD, 6−DSR.  Cyclades
Cyclom−8Ys RJ12 has: 1−DTR, 2−TxD, 3−Gnd, 4−CTS, 5−RxD, 6−DCD.  Specialix IO8+ has: 1−DCD,
2−RxD, 3−DTR/RTS, 4−Gnd, 5−TxD, 6−CTS.  The pins of the RJ (and MMJ) are numbered similar to the
RJ45. 

       Plug                         Jack (or socket)
  (Looking at the end           (Looking at the cavity
   end of a cable)               in a wall or PC back)
     .________.                       .________.
     | 654321 |                       | 123456 |
     |__.  .__|                       |__.  .__|
        |__|                             |__|

A standard MMJ null−modem cable has a MMJ connector at each end.  It connects to the PC using a
MMJ−to−DB adapter.  This adapter plugs into a DB (say 25 pin) connector on the back of the PC and the
MMJ connecter plugs into it.  If you don't have such an adapter, you can make a custom cable with a MMJ (or
filed RJ) connector on one end and a DB connector on the other end. 

The standard null−modem cable with two MMJ (or RJ11/14) connectors will connect: 1−6, 2−5, and 3−4.
Note that such a cable supports DTR/DSR flow control which is not supported (yet) by Linux.  Making up
your own standard 6−conductor null−modem cable is very simple if you understand that the ordinary
4−conductor telephone cable from the wall to your telephone, used in hundreds of millions of homes, is also a
null−modem cable.  Find one and wire your cable the same way. 
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If you lay such a cable (or your terminal null−modem cable) flat on the floor (with no twists) you will note
that both plugs on the ends have their gold contacts facing up (or both facing down).  Although it's
symmetrical, it is also null− modem if you think about it a bit. One may put a few such cables together with
inline couplers and everything works OK because each inline coupler is also a null−modem adapter.  Two
null−modem devices in series result in a straight−thru connection. 

Here's a custom cable diagram (by Mark Gleaves) for connecting MMJ to a 9−pin serial port using RTS/CTS
flow control: 

  DEC MMJ                            Linux PC DB9
Pin  Signal                           Signal  Pin
===  ======                           ======  ===
 1    DTR −−−−−−−−−−−−−−−−−−−−−−−|−−−> DSR     6
                                 |−−−> CTS     8
 2    TxD −−−−−−−−−−−−−−−−−−−−−−−−−−−> RxD     2
 3    SG (TxD)−−−−−−−−−−−−−−−−−−−−|−−− SG      5
 4    SG (RxD)−−−−−−−−−−−−−−−−−−−−|
 5    RxD <−−−−−−−−−−−−−−−−−−−−−−−−−−− TxD     3
 6    DSR <−−−−−−−−−−−−−−−−−−−−−−−−−−− RTS     7
                                  |−−> DTR     4
                                  |−−> CD      1
                       (no connection) RI      9

8−conductors and 10−conductors

RJ45 and RJ48 are 8−conductor modular telephone plugs. There exists some 10−conductor connectors which
are allegedly wider and will not mate with the 8−conductor ones.  People have called the 10−conductor ones
RJ45 and/or RJ48 but this may be incorrect.  These connectors are used for both flat telephone cable and
round twisted pair cable.  The cable end of the connector may be different for round and flat cable.  RJ48 has
an extra tab so that a RJ48 plug will not push into a RJ45 jack (but a RJ45 plug will mate with a RJ48 jack).
They're used on some multiport serial cards and networks.  Heres the pin numbers for an 8−conductor: 

  Plug                          Jack (or socket)
  (Looking at the end           (Looking at the cavity
   end of a cable)               in a wall)
     .__________.                   .__________.
     | 87654321 |                   | 12345678 |
     |__.    .__|                   |__.    .__|
        |____|                         |____|

11.8 Making or Modifying a Cable

Buy or make ? 

You may try to buy a short, null modem cable.  Just a "modem cable" will not work.  Null modem cables are
often labeled as serial printer cables (but serial printers are not very popular today and neither are the cables).
Unfortunately, they will probably not work for hardware flow control (until Linux supports DTR flow
control, possibly in 2001).  Make sure the connectors on the cable ends will fit the connectors on your
computer and terminal. 

But if you need longer cables to connect up terminals or need hardware flow control, how do you get the right
cables?  The right ready−made cables may be difficult to find (you might find them by searching the Internet),
especially if you want to use a minimum (say 4) of conductors.  One option is to get them custom made,
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which is likely to be fairly expensive although you might find someone to make them at prices not too much
higher than ready−made cable (I did). 

A low−cost alternative is to buy used cables (if you can find them). If you get a used terminal, ask if they
have a cable for it.  Another alternative is to make your own.  Even if you get used cables, they may need some
changes to the pin wiring.  In either case, this may require special tools.  Most connectors that come with short
cables are permanently molded to the cable and can't be rewired but most custom−made and homemade
cables have connectors that can be rewired. One advantage of making your own cable is that the skills you
learn will come in handy if a cable breaks (or goes bad) or if you need to make up another cable in a hurry. 

Pin numbers

The numbers of the pins should be engraved in the plastic of the connector.  Each pin should have a number
next to it.  You may need a magnifying glass to read them. 

Installing DB connectors on cable ends 

See  DB Connectors for a brief description of them.  Unfortunately, most cables one purchases today have
molded connectors on each end and can't be modified.  Others have connectors which unscrew and can be
rewired.  If you are making up cable or modifying an existing one then you need to know about pins.  There
are two types: soldered and crimped. 

The crimped pins require a special crimping tool and also need an "insertion/extraction" tool.  But once you
have these tools, making up and modifying cable may be faster than soldering.  If you are connecting two
wires to one pin (also needed if you want to jumper one connected pin to another pin) then soldering is faster
(for these pins).  This is because the crimped pins can only take one wire each while the soldered ones can
accept more than one wire per pin. 

To insert crimped pins just push them in by hand or with the insertion tool.  Using the tool for either insertion
of removal first requires putting the tool tip around the wire.  The tool tip should completely encircle the wire
at the the back of the pin. 

Removing a pin with this tool is a little tricky.  These directions can be best understood if you have both the
tool and wires in front of you as you read this.  With the tool tip around the wire insert the tool as far as it will
go into the hole (about 1 1/2 cm.  Some tools have a mark (such as a tiny hole) on them to indicate how far to
insert it.  The tool tip should have a tapered gap so that you may get the tip around the wire by starting it in
where the gap is wider than the wire.  The tool may have 2 tips.  The one that is the most difficult to get around
the wire is also the one that removes the wire the easiest since it almost completely envelops the wire. 

With the tip properly inserted pull on both the tool and the wire with a gentle pull.  If it doesn't come out, the
tool was likely not inserted correctly so either push it in more or twist it to a different position (or both).
Perhaps you should have used another tip that fits tighter around the pin.  Using this tool, one may readily
convert a straight−thru cable to a null−modem cable, etc. 

There can be problems using the "insertion/extraction" tool.  If the tools will not insert on the back of the pin,
it could be that the pin was not neatly crimped to the wire and is sort of square where it should be round, etc.
If a pin starts to come out but will not pull out all the way, the pin may be bent.  Look at it under a magnifying
glass.  Straightening a pin with needle−nose pliers may damage the gold plating but you may have to
straighten it to remove it. Sometimes a stuck pin may be pushed out with a thick screwdriver blade tip (or the
like) but if you push too hard you may gouge the plastic hole or bend the pin:. 
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Don't try soldering unless you know what you're doing or have read about how to do it. 

Installing RJ connectors 

These are telephone modular connecters one type of which is used for most ordinary telephones.  But there are
many different types (see RJ Modular Connectors). 

These are not easy to reuse.  You might be able to pull the wires out, push in something wedged that would
lift up the gold−colored contacts and reuse the connector.  There are special crimping tools used to install
them; a different tool for each type. 

If you don't have a crimping tool, installation is still possible (but difficult) using a small screwdriver (and
possibly a hammer).  Push in the cable wires and then push each gold−colored contact down hard with a small
screwdriver that will just fit between the insulating ridges between the contacts.  You may damage it if you
fail to use a screwdriver with a head almost the same thickness as the contacts or if the screwdriver slips off
the contact as you are pushing it down. You may also use a small hammer to pound on the screwdriver (push
first by hand). 

Be sure to not hurt the "remove lever" on the connecter when you push in the contacts.  Don't just set it down
on a table and push in the contacts.  Instead, put a shim (about 1 mm thick) that fits snugly in the crevice
between the lever and the body.  For such a shim you may use thick cardboard, several calling cards, or wood.
Since the bottom of the connector (that you will put on the table) isn't level (due to the "remove lever), make
sure that the table top has something a little soft on it (like a sheet of cardboard) to help support the non−level
connector.  Even better would be to put another 1mm shim under the first 6mm of the connector, supporting it
just under where you see the contacts.  A soft tabletop wouldn't hurt either.  Another method (I've never done
this) is to hold the connector in a vice but be careful not to break the connector. 

As compared to using a crimping tool, installing it per above takes a lot longer and is much more prone to
errors and failure but it's sometimes more expedient and a lot cheaper than buying a special tool if you only
have one or two connectors to install. 

12. Set−Up (Configure) in General 

12.1 Intro to Set−Up

Configuring (Set−Up) involves both storing a configuration in the non−volatile memory of the terminal, and
putting commands in start−up files (on your hard disk) that will run each time the computer is powered on (or
possibly only when the run−level changes).  This section gives an overview of configuring and covers the
configuring of the essential communication options for both the terminal and the computer.  The next two
major sections cover in detail the configuration of the terminal (see  Terminal Set−Up and the computer (see
Computer Set−Up (Configure) Details. 

12.2 Terminal Set−Up (Configure) Overview 

When a terminal is installed it's necessary to configure the physical terminal by saving (in its non−volatile
memory which is not lost when the terminal is powered off) the characteristics it will have when it is powered
on.  You might be lucky and have a terminal that has already been set−up correctly for your installation so
that little or no terminal configuration is required. 
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There are two basic ways of configuring a terminal.  One is to sit at the terminal and go thru a series of set−up
menus.  Another is to send escape sequences to it from the host computer.  Before you can send anything to the
terminal (such as the above escape sequences), its Communication Interface options such as the baud rate
must be set up to match those of the computer.  This can only be done by sitting at the terminal since the
communications must be set up right before the computer and the terminal can "talk" to each other.  See
Terminal Set−Up. 

12.3 Computer Set−Up (Configure) Overview

Besides possibly sending escape sequences from the computer to configure the terminal, there is the
configuring of the computer itself to handle the terminal.  If you're lucky, all you need to do is to put a "getty"
command in the /etc/inittab file so that a "login:" prompt will be sent to the terminal when the computer starts
up.  See the section  Getty (used in /etc/inittab) for details. 

The computer communicates with the terminal using the serial device driver software (part of the kernel).  The
serial device driver has a default configuration and is also partly (sometimes fully) configured by the getty
program before running "login" at each terminal. However, additional configuration is sometimes needed
using programs named "stty" and "setserial".  These programs (if needed) must be run each time the computer
starts up since this configuration is lost each time the computer powers down.  See  Computer Set−Up
(Configure) Details. 

12.4 Many Options

There are a great many configuration options for you to choose from.  The communication options must be set
right or the terminal will not work at all.  Other options may be set wrong, but will cause no problem since the
features they set may not be used.  For example, if you don't have a printer connected to the terminal it makes
no difference how the printer configuration parameters are set inside the terminal.  This last statement is not
100% correct.  Suppose that you have no printer but the computer (by mistake) sends the terminal a command
to redirect all characters (data) from the computer to the printer only.  Then nothing will display on the screen
and your terminal will be dead.  Some terminals have a configuration option to inform the terminal that no
printer is attached.  In this case the terminal will ignore any command to redirect output to the "printer" and
the above problem will never happen.  However, this doesn't help much since there are many other erroneous
commands that can be sent to your terminal that will really foul things up.  This is likely to happen if you send
the terminal a binary file by accident. 

In some cases a wrong setting will not cause any problem until you happen to run a rare application program
that expects the terminal to be set a certain way.  Other options govern only the appearance of the display and
the terminal will work fine if they are set wrong but may not be as pleasant to look at. 

Some options concern only the terminal and do not need to be set at the computer.  For example: Do you want
black letters on a light background?  This is easier on the eyes than a black background. Should a key repeat
when held down?  Should the screen wrap when a line runs off the right end of the screen?  Should keys click? 

12.5 Communication Interface Options 

Some of these communication settings (options) are for both the terminal and the computer and they must be
set exactly the same for both: speed, parity, bits/character, and flow control.  Other communication options are
only set at the terminal (and only a couple of these are essential to establish communications).  Still others
such as the address and interrupt (IRQ) of the physical port ttyS2 are set only at the computer using the
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"setserial" command.  Until all of the above essential options are compatibly set up there can be no
satisfactory serial communication (and likely no communication at all) between the terminal and the
computer.  For the terminal, one must set these options manually by menus at each terminal (or by using some
sort of special cartridge at each terminal).  The host computer is configured by running commands each time
the computer is powered up (or when people log in).  Sometimes the getty program (found in the /etc/inittab
file) which starts the login process will take care of this for the computer.  See  Getty (used in /etc/inittab)

The settings for both the computer and the terminal are: 

Speed (bits/second) • 
Parity• 
Bits per Character • 
Flow Control • 

Some essential settings for the terminal alone are: 

Port Select• 
Set communication to full duplex (=FDX on Wyse terminals)• 

If the  Getty (used in /etc/inittab) program can't set up the computer side the way you want, then you may
need to use one (or both) of the  Stty & Setserial commands. 

Speed 

These must be set the same on both the terminal and the computer. The speed is the bits/sec (bps or baud
rate).  Use the highest speed that works without errors.  Enabling flow control may make higher speeds
possible.  There may be two speeds to set at the terminal: Transmit and Receive, sometimes abbreviated T and
R.  Usually they are both set the same since stty in Linux doesn't seem to have the option yet of setting them
differently.  (There is an option to do this with the "stty" command but it seems to actually set them both the
same.) Common speeds are 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, ... The slower speeds (like 600)
are for printers and hard−copy terminals. 

Parity & should you use it ? 

For a definition see  Parity Explained. Parity−disabled is often the default.  To enable parity, you must both
enable it and then select either even or odd parity.  It probably makes no difference if it's odd or even.  For
terminals there are sometimes settings for both transmit and receive parity.  You should set both of these the
same since stty at the computer doesn't permit setting them differently.  The PC serial port usually can't
support different parities either.  Some terminal are unable to set receive parity and will simply always ignore
received parity bits.  On some older terminals if you use 8−data−bits per byte then parity will not work since
there is no room in the hardware for the extra parity bit. 

Should you use parity  at all?  Parity, while not really necessary, is nice to have.  If you don't have parity, then
you may get an incorrect letter here and there and wind up trying to correct spelling errors that don't really
exist.  However parity comes at a cost.  First, it's more complicated to set up since the default is usually no
parity. Secondly, parity will slow down the speed with which bytes travel over the serial cable since there
will be one more bit per byte.  This may or may not slow down the effective speed. 

For example, a hard−copy terminal is usually limited by the mechanics of the printing process.  Increasing the
bytes/sec when the computer (its UART chip) is transmitting only results in more flow−control "halt" signals
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to allow the mechanical printing to catch up.  Due to more flow−control waits the effective speed is no better
without parity than with it.  The situation is similar for some terminals: After you implement parity there may
be fewer flow−control waits per unit time resulting in more bits/sec (average).  However, due to the added
parity bits the bytes/sec (average) stays the same. 

One option is to install terminals with no parity.  Then if parity errors are noticed, it can be implemented later.
To spot possible errors with no parity, look for any spelling errors you don't think you made.  If you spot such
an error, refresh the screen (retransmit from the computer).  If the error goes away, then it's likely a parity
error.  If too many such errors happen (such as more than one every few hundred screens) then corrective
action is needed such as:  Enable parity and/or reduce speed, and/or use a shorter/better cable. Enabling parity
will not reduce the number of errors but it will tell you when an error has happened. 

Just the opposite policy is to initially enable parity.  Then if no parity errors (error symbols on the CRT) are
ever seen (over a reasonable period of time, say a month or two) it may be safely disabled. 

Bits/Character 

This is the character size (the number of data bits per character excluding any parity bit).  To use international
character sets you need 8 bits.  But it's not of much use unless your terminal has the fonts for them.  See
Character−Sets If you are only going to use ASCII characters, then select 7−bits since it's faster to transmit 7
bits than 8.  Some very old terminals only support 7−bit characters. 

Which Flow Control (Handshaking) ?

The choice is between "hardware" (for example  dtr/cts) or "software" (Xon/Xoff) flow control.  (The Adds
terminal menu incorrectly use "Xon/Xoff" to mean any kind of flow control.)  While hardware flow control
may be faster (if the one or two extra wires for it are available in the cable and if the terminal supports it) in
most cases Xon/Xoff should work OK.  Some people report that they solved disturbing problems (see below)
by converting to hardware flow control but software flow control has worked fine at other installations (and
for me personally). 

If you use software (Xon/Xoff) flow control and have users who don't know about it, then they may
accidentally send an Xoff to the host and lock up their terminal.  While it's locked, they may type frantically
in a vain attempt to unlock it.  Then when Xon is finally sent to restore communication, all that was typed in
haste gets executed, perhaps with unexpected results.  They can't do this with hardware flow control.  See
Flow Control for an explanation of flow control. 

Port select 

Since most terminals have two or more connectors on the back, it is usually possible to assign one of these
connecters to connect to the host computer and assign another connector to be the printer port. The connector
may have a name next to it (inspect it) and this name (such as Aux, Serial 2, or Modem) may be assigned to
either be the main host connection or the printer connection (or the like). 

12.6 Quick Attempt

While all the above may seem overly complex, to get a terminal working is often fairly simple.  The  Quick
Install section describes a simple way to try to do this.  But if that doesn't work or if you want to make the
display look better and perform better, more reading will be needed. 
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13. Terminal Set−Up (Configure) Details 

Except for the next subsection on sending escape sequences to the terminal, this section mainly presents the
details of setting up the terminal manually by sitting at the terminal and going thru menus.  If you haven't
already done so, you should read  Terminal Set−Up (Configure) Overview.  It's best if you have a terminal
manual, but even it you don't there is information here on many of the options which you might possibly need
to set. 

The communication parameters such as its baud rate must always be set up at the terminal since if this is not
done there can be no communication with the terminal.  Once communication is established you have two
choices for doing the rest of the terminal configuration. You may continue to configure manually at the
terminal and save the results in the terminal's non−volatile memory or you may do this by sending escape
sequences to the terminal from the computer each time the terminal is powered on (or the like). 

If you know how to set up and save a good configuration inside the terminal it may be the best way.  If you
don't, you might want to just send the init string from terminfo to your terminal each time you use the
terminal.  Perhaps doing nothing will still give you a usable terminal.  You (or an application program) can
always change things by sending certain escape sequences to the terminal. 

13.1 Send Escape Sequences to the Terminal

Once the communication interface is established, the rest of the configuration of the terminals may
sometimes be done by sending escape sequences to the terminals from the computer.  If you have a large
number of terminals, it may be worthwhile to write (or locate) a shell script to automatically do this.  There
may (or may not) be a command you can send to a terminal to tell it to save its current set−up in its
non−volatile memory so that it will be present the next time the terminal is powered on. 

There is an simple way to send these escape sequences and a complex way.  Using the simple way, you never
look up escape sequences but issue commands that automatically find an appropriate escape sequence in the
terminfo database and send that.  Unfortunately, not all the escape sequences which you might want to send
are always in the terminfo database.  Thus the more complex (but possibly better) way is to directly send
escape sequences. 

For this complex method you'll need an advanced manual.  Old terminal manuals once included a detailed list
of escape sequences but newer ones usually don't.  To find them you may need to purchase another manual
called the "programmers manual" (or the like) which is not supplied with the terminal.  A  Esc Sequence
List for some terminals is on the Internet but it's terse and likely incomplete. 

Even without a manual or the like, you may still send commands to configure the terminal by using the
programs "tput" and "setterm". See  Changing the Terminal Settings. You could just send the terminal an init
string from the terminfo entry if the init string sets up the terminal the way want it.  See Init String.  Unless
you plan to have these sequences sent from the computer to the terminal each time the terminal is powered
on, you must somehow save the settings in the non−volatile memory of the terminal. 
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13.2 Older Terminals Set−Up

On older terminals look at the keyboard for labels just above the top row of numeric keys.  If they exist, these
labels may be what these keys do in set−up mode.  Some older terminals may have only one "set−up" menu.
Still older ones have physical switches.  In some cases not all the switches are well labeled but they may be
well concealed.  Of course, if you set something with a switch, it's "saved" and there is no need to save the
setting in non−volatile memory. 

13.3 Getting Into Set−Up (Configuration) Mode 

To select options (configure) at the terminal, you must first enter "set−up" mode and then select options (i.e.
configure) using menus stored inside the terminal and displayed on the screen.  To do this, the terminal does
not even need to be connected to a computer. How to get into set−up mode is covered in the terminal's
manual, but here's some hints that may help: 

If there's a "set−up" key try pressing it.  Also try it shifted. 

Wyse: First try the shifted "Select" key; then substitute Ctrl for shifted in all of the above.• 
VT, Dorio: F3 may be the set−up key.  On VT420 and later models this key may have been
programmed to do something else so turn off the power.  When you turn on the power again, hit the
F3 key as soon as you get an initial screen message.

• 

IBM: 3151: Ctrl−ScrollLock.  3153: Ctrl−Minus_on_Keypad (or like 3151)• 

To move around in the set−up menus, try the arrow keys.  Use Return, Space, or a special key ("toggle" on old
terminals) to select. To exit set−up mode select exit from a menu (or on some older terminals press the set−up
key again). 

13.4 Communication Options

For the terminal to work at all, speed, parity, :its/character, and communication mode must be set correctly.
Incorrect flow control may cause loss and/or corruption of data seen on the screen. The essential
communication options were dealt with (for both the terminal and computer) in another section:  See
Communication Interface.  The following list provides some links to that section, as well as some additional
communication options set only at the terminal. 

Speed (bits/second)  (baud rate): 9600, 19200, etc.• 
Parity none, even, odd, mark, space• 
Bits per Character  {Data}: 7 or 8• 
Flow Control: or Handshake {Hndshk}: none, Xon−Xoff, or hardware (DTR, etc). 

Receiver Handshake {Rcv Hndshk} protects data being Received by the terminal by
transmitting flow−control signals to the host.

♦ 

Transmitter Handshake {Xmt Hndshk} is protection of data being Transmitted by the
terminal.  The terminal receives flow−control signals (and locks/unlocks the keyboard).
Includes "Incoming Xon/Xoff".

♦ 

• 

number of stop bits: 1 or 2. See  Voltage Sequence for a Byte• 
Flow control level {Rcv Hndshk Level} {{Xoff at ...}}: Flow control will send "stop" when this
number of bytes in the terminal's buffer is exceeded.

• 

Communication Mode {Comm}:  Full Duplex {FDX}, Half Duplex {HDX} {{Local Echo}},  Local
Mode {{Online/Local}}

• 
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Transmit Rate (Speed) Limit {Xmt Lim}: limits the transmit rate to the specified cps (chars/sec) even
though the baud rate setting may be at a higher speed.

• 

Function−Key Rate Limit: as above but for function key messages.• 
Port Select: Which physical connecter is for the host {Host Port} ?• 

13.5 Saving the Set−up

Your set−up must be saved in the non−volatile memory of the terminal so that it will be effective the next
time you turn on the terminal.  If you fail to save it, then the new settings will be lost when you turn off the
terminal.  Before you go to the trouble of setting up a terminal, make sure that you know how to save the
settings.  For modern terminals the save command is done via a menu. In some older terminals, only the
manual tells how to save.  For many of these you press Ctrl−S to save. 

13.6 Set−Up Options/Parameters 

What follows in this section describes some of the options which are available in the set−up menus of many
terminals.  Options are also called parameters or features.  Many options may be called "modes". Setting
options is often called "configuring".  Many of these options may also be set by sending certain escape
sequences to the terminal. Different models and brands of terminals have various options and the same option
may be called by different names (not all of which are given here) Terse names used by Wyse are enclosed in
{...}.  Names used mostly for VT terminals are enclosed in {{...}}. 

13.7 Emulation {Personality} {{Terminal Modes}}

Most modern terminals can emulate several other terminals.  The terminal can likely do more if it is set to
emulate itself (actually no emulation) {native personality}.  Sometimes there are 2 different emulations for the
same model of terminal.  For example VT220−7 emulates a VT220 with 7−bits/byte while VT220−8 emulates
a VT220 with 8−bits/byte (256 possible characters). 

Older models of terminals usually have fewer features than newer models.  Suppose one wanted to emulate an
old terminal but also wanted some of the advanced capabilities of the later model terminal they are sitting at.
This is sometimes possible (to some degree).  This feature is sometimes called {Enhance} (or Enhanced ??). 

13.8 Display Options

Character Cell Size {Char Cell}

This is the size of the cell in which a character fits.  It is measured in pixels (=tiny dots).  The more dots, the
better the resolution.  10x16 is 10 dots wide by 16 dots high (16 rows and 10 columns).  Note the notation is
inverted as compared to the notation for matrix dimensions which gives rows (height) first..  Also, the
character cell includes rows and columns of pixels allocated for the space between adjacent characters so the
cell size which defines the boundaries of an actual character may be smaller. 

Columns/Lines

Usually 80 columns and 24 or 25 lines.  This means that there may be up to 80 characters in a row (line) on
the screen.  Many terminals have a 132 column option but unless you have a large screen, the tiny characters
may be hard to read. {{Set 132 column mode}}.  If you set 25 lines, make sure that this is in the terminfo.
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You should also put "export LINES=25" into /etc/profile and also use: "stty −F /dev/ttySx rows 25".  If you
don't it might result in a scrolling problem (see Terminal doesn't scroll

Cursor

The cursor may be set to appear as a rectangle (= block) {Blk}. Other options are underline {Line} or
blinking.  I prefer non−blinking {Steady} block since it's big enough to find quickly but there is no distractive
blinking.  If you set it invisible (an option on some terminals) it will disappear but new letters will appear on
the screen as you type at the invisible cursor. 

Display Attributes (Magic Cookies)

Display Attributes may either be magic cookies or be attribute bytes assigned to each character. For magic
cookies, there is a limit to their extent: Are they in effect to the end of the line or to the end of the page?  It's
best to use attribute bytes (which could actually be half−bytes = nibbles). 

Display Control Characters {Monitor}

May be called various names such as "Display Controls".  When off (normal) it's "Interpret Controls".  When
set on, you see the escape sequences from the host (which you normally never see on the screen). So that
these sequences may be viewed in sequence on a line, they are not acted upon (interpreted) by the terminal.
Except that a CR LF sequence creates a new line.  See  Control Codes. 

Double Width/Height

Some terminals can have their characters double width and/or double height.  This feature is seldom needed.
When changing a line to double width (DW) the right half (RH) is pushed off the screen and there is the
question of whether or not to delete (erase) it. "Preserve" means to keep the RH of DW lines.  When in double
height mode, it may be necessary to send each such line twice (the 2nd time down one row) in order to get a
double−height line on the screen. 

Reverse Video {Display} (Background Light/Dark)

Normal video is light (white, green, amber) letters (foreground) on a dark (black) background.  Reverse video
{Display Light} is the opposite: black text on a light background.  This is easier on the eyes (unless the room
is dark). 

Status Line

A status line is a line at the top or bottom of the screen that displays info about the application program you
are running.  It's often highlighted in some way.  With a status line enabled, an application can send the
terminal a special escape sequence which means that the text that follows is for the status line.  However,
many applications don't use this feature but instead only simulate a real status line by direct cursor
positioning.  The ordinary user looking at it doesn't know the difference. 

Upon 80/132 Change: Clear or Preserve?

When switching the number of columns from 80 to 132 (or conversely) should the data displayed in the old
format be erased (cleared) or preserved? {80/132 Clr} {{Screen Width Change}}.  It should make no
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difference how you set this option since if an application program uses 132 columns, it should set this option
appropriately via a control sequence. 

13.9 Page Related Options

For a Wyse terminal to be able to access multiple pages of display memory {Multipage} must be set to on. 

Page Size

The terminal memory may be divided up into a number of pages. See  Pages and  Pages (definition) for
explanations of pages.  You may partition the page memory into a number of pages of selected length.  Linux
applications don't seem to use pages at present so it shouldn't make much difference how you set this up. 

Coupling (of cursor & display)

The terminal memory may be divided up into a number of pages. See  Pages and  Pages for explanations of
pages.  When the cursor is moved to a location in video memory not currently displayed (such as another
page, or on the same page but to a location not displayed on the screen) should the display change to let one
view the new cursor location?  If so, this is called "Coupling".  For cursor movement within the same page
there is "Vertical Coupling" and "Horizontal Coupling".  For movement to another page there is "Page
Coupling". 

13.10 Reporting and Answerback

The terminal will identify itself and its state, or send out a pre−recorded message in response to certain
escape sequences. 

Answerback Message (String)

You may write a short message during set−up which may optionally be sent to the host at power−up or be
sent to the host in response to a request from the host (perhaps the ENQ (inquire) control character). 

Auto Answerback

If set, sends the answerback message to the host at power−on without the host asking for it.  Do any "getty"
processes look for this ?? 

Answerback Concealed

If set, will never let anyone see the answerback message (except of course the host computer).  If it needs to
be changed, deselect "answerback concealed" and the formerly concealed message will be destroyed so you
then may enter a new message (but you don't get to see the old one). 

Terminal ID {ANSI ID}

The terminal sends this reply in answer to a request for identity. 
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13.11 Keyboard Options

Keyclick

When set, pressing any key makes a click (broadcast by a tiny loudspeaker in the keyboard).  These clicks
annoy some people and I think it's best to set keyclick off. 

Caps Lock {Keylock}

When the Caps−Lock key is down, should only the alphabetic keys generate shifted characters?  If set to
{Caps} or upper−case−only then hitting a number key with the Caps−Lock on will type the number. To get
the symbol above the number one must manually hold down the shift key.  This is the normal mode.  If set to
{Shift} then all keys type the shifted character when Caps−Lock is on (hitting the 5 key should type %
without holding down Shift, etc.). 

Auto Repeat {Repeat}

If a key is held down then that key is repeatedly "typed".  This is handy for repeatedly typing the same
character to create a line across the page. 

Margin Bell

When the cursor is 8 columns away from the right side of the display, a bell is rung (like on an old
typewriter).  Almost all editors will automatically create a new line if needed (no need to hit the Return key)
so this feature is seldom needed. 

Remapping the Keys

The code sent to the host when a key is pressed is normally the ASCII code for that key (depends also on
Shift and Control key).  On some terminals you may make any key send any code you wish.  That is, you may
completely remap the keyboard by setting up the terminal that way.  This may be useful for some foreign
languages and Dvorak keyboard layouts, etc. which permit one to type faster.  Even for terminals that don't
have the feature, there is software to remap the keyboard (and screen also).  It's something like a device driver
which uses a pseudo terminal.  See  Character Mapping: mapchan

Corner Key (for Wyse only)

Wyse terminals have a key near the lower left corner which may be set to do various things.  Its may be
labelled "Funct", "Compose Character", "Alt", "Hold" or "Scroll Lock".  Early models don't have all of the
following options: 

Hold: No−Scroll.  Hitting it stops the flow of data (using flow control) to the terminal.  Hitting the key
again restores normal flow.

• 

Compose: Hitting it followed by certain other keys permits one to generate a limited number of
pre−defined non−Latin characters.

• 

Meta: Holding it down while typing another key sets the high−order bit on each byte.  Are there
models where it acts like a toggle to lock in the meta effect ??

• 

Funct: Holding it down while typing any alphanumeric key gets a header (SOH) and trailer (CR) byte
framing the ASCII byte code.

• 
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Kpd Compose: Holding it down while typing a decimal number on the numeric keys (followed by
"enter") sends out the same number in hexadecimal ??

• 

Numeric Keypad or Arrow Keys Sends

The numeric keypad (the rectangle of mostly numeric keys to the right of the main part of the keyboard) can
be set to send special codes which will do special things in certain application programs. Ditto for the arrow
keys.  There is thus a "normal" mode where they send what is shown on the keycap (or the normal code
sequence for an arrow−key) and an "application" mode where special escape sequences are sent.  In some
cases there is a "hex" numeric mode which is almost like normal numeric mode except that 6 non−numeric
keys send the letters A−F.  Thus one may type for example "B36F" on the numeric keypad. 

What does shifted−del and shifted−bs send?

Depending on how they're set up, shifted−del sometimes sends the control character CAN and shifted
backspace sometimes sends DEL. 

PC Scan Codes

Many terminals can emulate a PC keyboard by sending PC scancodes (see
Keyboard−and−Console−HOWTO) instead of ASCII codes.  This is mostly used with special Multiuser DOS
OSs.  It won't work with ordinary MS DOS.  See  Non−Linux OSs However, hardly any Linux programs that
run via the serial port can accept scancodes.  If this is the latest version of this HOWTO, let me know if any
programs do this.  I think Foxpro can do it.  You need to define smsc and rmsc in the terminfo, and perhaps
pctrm. 

When using scancodes it's best to use hardware flow control since normal software flow control conflicts
with some of the codes (??). If you do use software flow control, you must use the XPC type of flow control.
It uses 0x65 and 0x67 for on and off characters.  It must be set this way both in the terminal and by stty for the
PC. 

Alternate Characters

Some keys may have alternative letters on them.  When keys is set to "Typewriter" they send what they would
normally send on a typewriter.  When keys is set to something else the alternative characters are sent. 

13.12 Meaning of Received Control Codes

Auto New Line {Newline}

In this case "New Line" means a new line starting at the left margin below the current line.  In Linux and C
"new line" (NL) may have a different meaning: the line−feed control character LF also called new−line or
NL.  This is because in Linux text files, the LF character means a "new line starts here" so it's labeled NL.
Normally, a LF (NL) sent to a terminal only results in the cursor jumping down one line below where is was
and does not move the cursor back to the start of this "new line". 

If Auto New Line is set, the above "normal" situation is canceled and a physical new line is created on the
display upon receiving a LF from the host.  This is exactly what one wants in Linux.  Except that (when Auto
New Line is set) the Return (or Enter) key sends a CR LF sequence to the host (for Wyse and VT100, but for
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VT420 ??).  Since Linux uses LF as a "new line" marker in files, Linux would like only a LF to be sent (and
not a CR LF).  Thus the "New Line" option is seldom used. Instead, the required translations are made by the
serial port device driver by default.  It is as if one gave the command "stty onlcr icrnl".  But you don't need to
do this since it's the default. 

Auto Line Feed {Rcv CR}

This is just another type of "Auto New Line".  When a CR (carriage return) character is received, a LF (line
feed) action is added resulting in a new line being displayed.  Since Linux marks the end of lines with LF, this
option is not used. 

Recognize Del (Wyse Only ??) or Null 

If off, the DEL character received by the terminal is ignored.  If on the DEL performs a destructive backspace.
Null characters are usually ignored in any case.  Both DEL and NULL are sometimes used for padding.  See
Padding

13.13 Where New Text Goes

Line Wrap

Also called "Auto Wrap(around)".  What happens when the right edge of the screen is reached (col. 80, etc)
and no return character (or the like) has been sent from the host?  If Line Wrap is set, then the rest of the line
displays on the line below, etc.  Otherwise, the rest of the line is lost and is not seen on the screen.  Any good
application should handle the situation correctly (provided the terminfo knows how Line Wrap is set).  Thus
even if Line Wrap is not set, the application should either wrap the screen for long lines or provide another
way for you to view the cutoff tail of long lines (by use of the arrow keys, etc).  But a raw copy command
(and other situations) may not do this so it's often best to set line wrap. 

For an 80 col. screen, most terminals only wrap if the 81st character from the host is a graphic (printable)
character.  This allows for the case where 81st character from the host might be "return" or a "newline"
(non−graphic characters) which means that the application is handing the wrapping OK and intervention by
the terminal is not needed. 

Scrolling

Scrolling {Scrl} is where all the lines on the screen move up or down.  Its also called "panning" which
includes movement sideways.  In ordinary scrolling lines roll off the bottom or top of the screen and
disappear, and new lines from the host appear at the opposite edge (top or bottom).  There are 3 types of this:
smooth, jump, or burst. Burst is not really scrolling since its an instant replacement of an old screenfull by a
new one (although some lines on the new screen may be from the old screen).  Jump is where new lines jump
into view one at a time.  Smooth {Smth} is where the text moves at a steady speed upward or downward.  If
the smooth scroll rate is slow enough, one may read the newly visible lines when they are still scrolling (in
motion). 

Smooth scrolling on slow terminals was once useful since one could continue reading as the display was
scrolling.  But with higher baud rates, jump scroll is so fast that little time is lost as the new display appears.
Since it takes a little longer to read scrolling text than fixed text, it may actually waste more time if smooth
scrolling is selected. 
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If (auto)scrolling {Autoscrl} is disabled, then new text from the host must go somewhere so it is put at the
top of the display.  If the old text is not erased, the new text merges (nonsensically) into the old. If the old text
is erased, then the new text is out of context.  So keep (auto)scrolling enabled. 

New Page?

See  Pages and  Pages for explanations of pages.  When the current page is full (the last line is finished) should
the page scroll, or should a new page be created (leaving the previous page stored in the terminal's display
memory).  If {Autopage} is set, then a new page is created.  Since you are probably not using pages, you
should probably set this to off. 

13.14 Function Keys 

These are the keys labeled F1, F2, etc.  On older terminals they may be labeled PF1, PF2, etc. where the P
stands for Programmable. Some keyboards have both.  One may program (redefine) these keys to send out a
string of user−defined bytes.  They may often be easily "programmed" using a certain set−up menu {FKey}.
On some terminals, one may also specify where this string is sent to when the key is pressed.  In "normal"
mode, pressing the key is just like typing the string at the keyboard.  In "local" mode pressing the key sends it
to the terminal (just like if the terminal was in local mode).  This may be used to send escape sequences to the
terminal so as to configure it in a special way.  In "remote" mode, the string is always sent out the serial port
to the host computer (even if the terminal is in local mode). 

13.15 Block Mode Options

Some options are only for the case of  Block Mode.  This option is powerful since it provides forms and takes
load off the host computer by transmitting in bursts.  But it's more complicated to set up and is thus not used
too much. 

Forms Display

In block mode some regions of the screen are for the text of forms and are thus write−protected "Prot"
{WPRT}.  Options may set the characters in these regions to appear dim, reverse video {WPRT Rev}, and/or
underlined {WPRT Undrln}.  {WPRT Intensity} may be set to dim, normal, or even blank (invisible) 

Send Entire Block ?

Should write−protected text (the original text in the form) be sent to the host upon transmission of a block:
{Send All} or is write−protected text also read−protected: {Send Erasable} 

Region to Send

Should the entire screen be sent or just the scrolling region? {Send Area}.  Should the sending stop when the
current cursor position is reached?  If {Xfer Term} is set to Cursor, only the data on the screen up to the
cursor is sent. 

Block/Page terminator

What is the termination symbol to be appended to a block of data? {Blk End} or at the end of a page {Send
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Term}ination. 

13.16 Locks

There are various types of Locks.  One is the Locked keyboard due to flow control.  See  Keyboard
Lock Another lock {Feature Lock} is that which prohibits the host computer from changing the terminal
set−up by sending certain escape sequences to the terminal.  Placing such a lock may result in unexpected
behavior as application programs send escape sequences to the terminals that are ignored.  Not all set−up
parameters lock.  Unless you have a good reason to do so, you should not enable such locking. 

A Function Key lock will prohibit the computer from redefining what a programmable function key sends.
You may want to use this if you have something important programmed into the function keys. 

13.17 Screen Saver {Scrn Saver}

Also called "CRT Saver".  This turns off (or dims) the screen after the terminal is not used for a period of
time.  It may prolong the life of the screen and save some energy.  Hitting any key will usually restore the
screen and may "execute" that key so it's best to hit the shift−key, etc. 

13.18 Printer

For Wyse, if there is no {Printer Attached} set it to Off.  It's not essential to do this, but if you do it any escape
sequence to send text to the printer (instead of the terminal) will be ignored. 

Setting up the printer port is about the same (usually simpler) as setting up the communications on the main
port.  There are a couple of options specific to the printer.  Is the printer a serial or parallel printer?  If it's
parallel it should be designated as such in setup and connected to the parallel port on the terminal (if there is
one). Should a FF (form feed) be sent to the printer at the end of a print job?  If {Print Term} is set to FF, this
will happen. 

14. Computer Set−Up (Configure) Details 

There are various files to edit to set up the computer for terminals.  If you're lucky, you'll only need to edit
/etc/inittab. One does this by editing at the console (or from any working terminal). 

14.1 Getty (used in /etc/inittab) 

Introduction to Getty

In order to have a login process run on a serial port (and the terminal connected to it) when the computer
starts up (or switches run levels) a getty command must be put into the /etc/inittab file. Running getty from
the command line may cause problems (see  If getty run from command line: Programs get stopped to see
why ).  Getty GETs a TTY (a terminal) going.  Each terminal needs its own getty command.  There is also at
least one getty command for the console in every /etc/inittab file.  Find this and put the getty commands for
the real terminals next to it.  This file may contain sample getty lines for text terminals that are commented
out so that all you need to do is to uncomment them (remove the leading #) and change a few arguments. 
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The arguments which are permitted depend on which getty you use:
Two gettys best for directly connected terminals are: 

agetty (sometimes just called getty): Very easy to set up. No config files.  See  agetty1. 
getty (part of getty_ps)2. 

Two gettys best for modems (avoid for directly connected terminals) are: 
mgetty: the best one for modems; works for terminals too but inferior1. 
uugetty: for modems only; part of the getty_ps package2. 

Simple gettys to use if you don't use a real text−terminal.  Most Linux users use one of these at their monitor: 
mingetty1. 
fbgetty2. 

Your Linux distribution may come with either ps_getty or agetty for text−terminals.  Some distributions
supply neither.  Unfortunately, they often just call it "getty" so you may need to determine which one you
have since the arguments you put after it in /etc/inittab differ. Debian uses agetty (in the util−linux package).
RedHat uses ps_getty which was found at:  http://www.redhat.com/swr/i386/getty_ps−2.0.7j−12.i386.html

As a last resort to try to determine which getty you have, you might check out its executable code (usually in
/sbin).  ps_getty has /etc/gettydefs embedded in this code.  To search for it, go to /sbin and type:
strings getty | grep getty 
If getty is actually agetty the above will result in nothing.  However if you have agetty typing:
getty −h
should show the options [−hiLmw]. 

If you don't have the getty you want check other distributions and the alien program to convert between
RPM and Debian packages.  The source code may be downloaded from  Getty Software. 

If you are not using modem control lines (for example if you only use the minimum number of 3 conductors:
transmit, receive, and common signal ground) you should let getty know this by using a "local" flag. The
format of this depends on which getty you use. 

Getty exits after login (and can respawn)

After you log in you will notice (by using "top", "ps −ax", or "ptree") that the getty process is no longer
running.  What happened to it?  Why does getty restart again if your shell is killed?  Here's why. 

After you type in your user name, getty takes it and calls the login program telling it your user name.  The
getty process is replaced by the login process.  The login process asks for your password, checks it and starts
whatever process is specified in your password file.  This process is often the bash shell.  If so, bash starts and
replaces the login process.  Note that one process replaces another and that the bash shell process originally
started as the getty process.  The implications of this will be explained below. 

Now in the /etc/inittab file getty is supposed to respawn (restart) if killed.  It says so on the line that calls
getty.  But if the bash shell (or the login process) is killed, getty respawns (restarts).  Why? Well, both the
login process and bash are replacements for getty and inherit the signal connections establish by their
predecessors.  In fact if you observe the details you will notice that the replacement process will have the
same process ID as the original process.  Thus bash is sort of getty in disguise with the same process ID
number.  If bash is killed it is just like getty was killed (even though getty isn't running anymore).  This results
in getty respawning. 
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When one logs out, all the processes on that serial port are killed including the bash shell.  This may also
happen (if enabled) if a hangup signal is sent to the serial port by a drop of DCD voltage by the modem.
Either the logout or drop in DCD will result in getty respawning.  One may force getty to respawn by
manually killing bash (or login) either by hitting the k key, etc. while in "top" or with the "kill" command.
You will likely need to kill it with signal 9 (which can't be ignored). 

If getty run from command line: Programs get stopped 

You should normally run getty from inside /etc/inittab and not from the command line or else some
programs running on the terminal may be unexpectedly suspended (stopped).  Here's why (skip to the next
section if the why is not important to you).  If you start getty for say ttyS1 from the command line of another
terminal, say tty1, then it will have tty1 as its "controlling terminal" even though the actual terminal it runs on
is ttyS1.  Thus it has the wrong controlling terminal.  But if it's started inside the inittab file then it will have
ttyS1 as the controlling terminal (correct). 

Even though the controlling terminal is wrong, the login at ttyS1 works fine (since you gave ttyS1 as an
argument to getty).  The standard input and output are set to ttyS1 even though the controlling terminal
remains tty11.  Other programs run at ttyS1 may inherit this standard input/output (which is connected to
ttyS1) and everything is OK.  But some programs may make the mistake of trying to read from their
controlling terminal (tty1) which is wrong.  Now tty1 may think that these programs are being run in the
background by tty1 so an attempt to read from tty1 (it should have been ttyS1) results in stopping the process
that attempted to read.  (A background process is not allowed to read from its controlling terminal.).  You may
see a message something like: "[1]+  Stopped" on the screen.  At this point you are stuck since you can't
interact with a process which is trying to communicate with you via the wrong terminal.  Of course to escape
from this you can go to another terminal and kill the process, etc. 

agetty (may be named getty) 

An example line in /etc/inittab: 

S1:23:respawn:/sbin/getty −L 19200 ttyS1 vt102

S1 is from ttyS1.  23 means that getty is run upon entering run levels 2 or 3.  respawn means that if getty (or a
process that replaced it such as bash) is killed, getty will automatically start up (respawn) again.  /sbin/getty is
the getty command.  The −L means Local (ignore modem control signals).  −h (not shown in the example)
enables hardware flow control (same as stty crtscts).  19200 is the baud rate. ttyS1 means /dev/ttyS1 (COM2
in MS−DOS).  vt102 is the type of terminal and this getty will set the environment variable TERM to this
value.  There are no configuration files.  Type "init q" on the command line after editing getty and you should
see a login prompt. 

Agetty's auto−detection of parity problems

The agetty program will attempt to auto−detect the parity set inside the terminal (including no parity).  It
doesn't support 8−bit data bytes plus 1−bit parity.  See  8−bit data bytes (plus parity).  If you use stty to set
parity, agetty will automatically unset it since it initially wants the parity bit to come thru as if it was a data
bit.  This is because it needs to get the last bit (possibly a parity bit) as you type your login−name so that it can
auto−detect parity.  Thus if you use parity, enable it only inside the text−terminal and let agetty auto−detect
it and set it at the computer.  If your terminal supports received parity, the login prompt will look garbled until
you type something so that getty can detect the parity.  The garbled prompt will deter visitors, etc. from trying
to login.  That could be just what you want. 
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There is sometimes a problem with auto detection of parity.  This happens because after you first type your
login name, agetty starts the login program to finish logging you in. Unfortunately, the login program
can't detect parity so if the getty program failed to determine the parity then login will not be able to
determine it either.  If the first login attempt fails, login will let you try again, etc. (all with the parity set
wrong).  Eventually, after a number of failed attempts to login (or after a timeout) agetty will start up again
and start the login sequences all over again.  Once getty is running again, it may be able to detect the parity on
the second try so everything may then work OK. 

With wrong parity, the login program can't correctly read what you type and you can't log in.  If your
terminal supports received parity, you will continue to see a garbled screen.  If getty fails to detect parity an
/etc/issue file is usually dumped to the screen just before the before the prompt, so more garbled words may
appear on the screen. 

Why can't agetty detect parity by the first letter typed?  Here's an example: Suppose it detects an 8−bit byte
with its parity bit 0 (high−order bit) and with an odd number of 1−bits.  What parity is it? Well, the odd
number of 1 bits implies that it's odd parity.  But it could also just be an 8−bit character with no parity.  There's
no way so far to determine which.  But so far we have eliminated the possibility of even parity.  The detection
of parity thus proceeds by a process of elimination. 

If the next byte typed is similar to the first one and also only eliminates the possibility of even parity, it's still
impossible to determine parity.  This situation can continue indefinitely and in rare cases login will fail until
you change your login−name.  If agetty finds a parity bit of 1 it will assume that this is a parity bit and not a
high−order bit of an 8−bit character.  It thus assumes that you don't use meta−characters (high bit set) in your
user name (i.e that your name is in ASCII). 

One may get into a "login loop" in various ways.  Suppose you only type a single letter or two for your login
name and then hit return. If these letters are not sufficient for parity detection, then login runs before parity
has been detected.  Sometimes this problem happens if you don't have the terminal on and/or connected when
agetty first starts up. 

If you get stuck in this "login loop" a way out of it is to hit the return key several times until you get the getty
login prompt.  Another way is to just wait a minute or so for a timeout. Then the getty login prompt will be
put on the screen by the getty program and you may try again to log in. 

8−bit data bytes (plus parity) 

Unfortunately, agetty can't detect this parity.  As of late 1999 it has no option for disabling the auto−detection
of parity and thus will detect incorrect parity.  The result is that the login process will be garbled and parity
will be set wrong.  Thus it doesn't seem feasible to try to use 8−bit data bytes with parity. 

getty (part of getty_ps) 

(Most of this is from the old Serial−HOWTO by Greg Hankins)
For this getty one needs to both put entries in a configuration file and add an entry in /etc/inittab.  Here
are some example entries to use for your terminal that you put into the configuration file
/etc/gettydefs. 

# 38400 bps Dumb Terminal entry
DT38400# B38400 CS8 CLOCAL # B38400 SANE −ISTRIP CLOCAL #@S @L login: #DT38400

# 19200 bps Dumb Terminal entry
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DT19200# B19200 CS8 CLOCAL # B19200 SANE −ISTRIP CLOCAL #@S @L login: #DT19200

# 9600 bps Dumb Terminal entry
DT9600# B9600 CS8 CLOCAL # B9600 SANE −ISTRIP CLOCAL #@S @L login: #DT9600

Note that the DT38400, DT19200, etc. are just labels and must be the same that you use in /etc/inittab. 

If you want, you can make getty print interesting things in the login banner.  In my examples, I have the
system name and the serial line printed.  You can add other things: 

@B    The current (evaluated at the time the @B is seen) bps rate.
@D    The current date, in MM/DD/YY.
@L    The serial line to which getty is attached.
@S    The system name.
@T    The current time, in HH:MM:SS (24−hour).
@U    The number of currently signed−on users.  This is  a
      count of the number of entries in the /etc/utmp file
      that have a non−null ut_name field.
@V    The value of VERSION, as given in the defaults file.
To display a single '@' character, use either '\@' or '@@'.

When you are done editing /etc/gettydefs, you can verify that the syntax is correct by doing: 

linux# getty −c /etc/gettydefs

Make sure there is no other getty or uugetty config file for the serial port that your terminal is attached
to such as (/etc/default/{uu}getty.ttySN or /etc/conf.{uu}getty.ttySN), as this will
probably interfere with running getty on a terminal.  Remove such conflicting files if they exits. 

Edit your /etc/inittab file to run getty on the serial port (substituting in the correct information for
your environment − port, speed, and default terminal type): 

S1:23:respawn:/sbin/getty ttyS1 DT9600 vt100

Restart init: 

linux# init q

At this point, you should see a login prompt on your terminal.  You may have to hit return to get the terminal's
attention. 

mgetty

The "m" stands for modem.  This program is primarily for modems and as of mid 2000 it will require
recompiling to use it for text−terminals (unless you use hardware flow control −−and that usually requires a
hand−made cable).  For the documentation for directly connected terminals see the "Direct" section of the
manual: mgetty.texi.

Look at the last lines of /etc/mgetty/mgetty.config for an example of configuring it for a terminal.
Unless you say "toggle−dtr no" it will think that you have a modem and drop (negate) the DTR pin at the PC
in a vain attempt to reset the non−existent modem.  In contrast to other gettys, mgetty will not attach itself to a
terminal until someone hits any key of that terminal so you'll see a ? for the terminal in top or ps until this
happens.  The logs in /var/log/mgetty/ may show a few warning messages which are only applicable
to modems which you may ignore. 
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Here's an example of the simple line you put in /etc/inittab:

s1:23:respawn:/sbin/mgetty −r ttyS1

14.2 Stty & Setserial 

There is both a "stty" command and a "setserial" command for setting up the serial ports.  Some (or all) of the
needed stty settings can be done via getty and there may be no need to use setserial so you may not need to
use either command.  These two commands (stty and setserial) set up different aspects of the serial port.  Stty
does the most while setserial configures the low−level stuff such as interrupts and port addresses.  To "save"
the settings, these commands must be written in certain files (shell scripts) which run each time the computer
starts up.  Distributions of Linux often supply a shell script which runs setserial but seldom supply one
which runs stty since on seldom need it. 

14.3 Setserial 

This part is in 3 HOWTOs: Modem, Serial, and Text−Terminal.  There are some minor differences,
depending on which HOWTO it appears in. 

Introduction

If you have a Laptop (PCMCIA) don't use setserial  until you read  Laptops: PCMCIA.  setserial is a
program which allows you to tell the device driver software the I/O address of the serial port, which interrupt
(IRQ) is set in the port's hardware, what type of UART you have, etc.  Since there's a good chance that the
serial ports will be automatically detected and set, many people never need to use setserial.  In any case
setserial will not work without either serial support built into the kernel or loaded as a module.  The module
may get loaded automatically if you (or a script) tries to use setserial. 

Setserial can also show how the driver is currently set.  In addition, it can be made to probe the hardware I0
port addresses to try to determine the UART type and IRQ, but this has severe limitations.  See Probing.  Note
that it can't set the IRQ or the port address in the hardware of PnP serial ports (but the plug−and−play
features of the serial driver may do this).  It can't read the PnP data stored in configuration registers in the
hardware. 

If you only have one or two built−in serial ports, they will usually get set up correctly without using setserial.
Otherwise, if you add more serial ports (such as a modem card) you may need to deal with setserial.  Besides
the man page for setserial, check out info in /usr/doc/setserial.../ or
/usr/share/doc/setserial. It should tell you how setserial is handled in your distribution of Linux. 

Setserial is often run automatically at boot−time by a start−up shell−script for the purpose of assigning
IRQs, etc. to the driver. Setserial will only work if the serial module is loaded (or if the equivalent was
compiled into your kernel).  If the serial module gets unloaded later on, the changes previously made by
setserial will be forgotten by the kernel.  But recent (2000) distributions may contain scripts that save
and restore this.  If not, then setserial must be run again to reestablish them.  In addition to running via a
start−up script, something akin to setserial also runs earlier when the serial module is loaded (or the
like).  Thus when you watch the start−up messages on the screen it may look like it ran twice, and in fact it
has. 

Setserial can set the time that the port will keep operating after it's closed (in order to output any characters
still in its buffer in main RAM).  This is needed at slow baud rates of 1200 or lower.  It's also needed at higher
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speeds if there are a lot of "flow control" waits.  See "closing_wait" in the setserial man page. If your serial
port is Plug−and−Play you may need to consult other HOWTOs such as Plug−and−Play or Serial. 

Setserial does not set either IRQ's nor I/O addresses in the serial port hardware itself.  That is done either by
jumpers or by plug−and−play.  You must tell setserial the identical values that have been set in the hardware.
Do not just invent some values that you think would be nice to use and then tell them to setserial.  However, if
you know the I/O address but don't know the IRQ you may command setserial to attempt to determine the
IRQ. 

You can see a list of possible commands by just typing setserial with no arguments.  This fails to show
you the one−letter options such as −v for verbose which you should normally use when troubleshooting. Note
that setserial calls an IO address a "port".  If you type: 

setserial −g /dev/ttyS*

you'll see some info about how that device driver is configured for your ports.  Note that where it says
"UART: unknown" it probably means that no uart exists.  In other words you probably have no such serial
port and the other info shown about the port is meaningless and should be ignored.  If you really do have such
a serial port, setserial doesn't recognize it and that needs to be fixed. 

If you add −a to the option −g you will see more info although few people need to deal with (or understand)
this additional info since the default settings you see usually work fine.  In normal cases the hardware is set up
the same way as "setserial" reports, but if you are having problems there is a good chance that "setserial" has
it wrong. In fact, you can run "setserial" and assign a purely fictitious I/O port address, any IRQ, and
whatever uart type you would like to have. Then the next time you type "setserial ..." it will display these
bogus values without complaint.  They will also be officially registered with the kernel as displayed (at the top
of the screen) by the "scanport" command.  Of course the serial port driver will not work correctly (if at all) if
you attempt to use such a port.  Thus when giving parameters to "setserial" anything goes.  Well almost.  If you
assign one port a base address that is already assigned (such as 3e8) it will not accept it.  But if you use 3e9 it
will accept it. Unfortunately 3e9 is already assigned since it is within the range starting at base address 3e8.
Thus the moral of the story is to make sure your data is correct before assigning resources with setserial. 

While assignments made by setserial are lost when the PC is powered off, a configuration file may restore
them (or a previous configuration) when the PC is started up again.  In newer versions, what you change by
setserial may get automatically saved to a configuration file.  In older versions, the configuration file only
changes if you edit it manually so the configuration always remains the same from boot to boot.  See
Configuration Scripts/Files

Probing 

Prior to probing with "setserial", one may run the "scanport" command to check all possible ports in one scan.
It makes crude guesses as to what is on some ports but doesn't determine the IRQ.  But it's a fast first start.  It
may hang your PC but so far it's worked fine for me. 

With appropriate options, setserial can probe (at a given I/O address) for a serial port but you must
guess the I/O address.  If you ask it to probe for /dev/ttyS2 for example, it will only probe at the address it
thinks ttyS2 is at (2F8).  If you tell setserial that ttyS2 is at a different address, then it will probe at that
address, etc. See  Probing

The purpose of this is to see if there is a uart there, and if so, what its IRQ is.  Use "setserial" mainly as a last
resort as there are faster ways to attempt it such as wvdialconf to detect modems, looking at very early
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boot−time messages, or using pnpdump −−dumpregs.  To try to detect the physical hardware use for
example :
setserial /dev/ttyS2 −v autoconfig
If the resulting message shows a uart type such as 16550A, then you're OK.  If instead it shows "unknown"
for the uart type, then there is supposedly no serial port at all at that I/O address.  Some cheap serial ports
don't identify themselves correctly so if you see "unknown" you still might have a serial port there. 

Besides auto−probing for a uart type, setserial can auto−probe for IRQ's but this doesn't always work right
either.  In one case it first gave the wrong irq but when the command was repeated it found the correct irq.  In
versions of setserial >= 2.15, the results of your last probe test could be automatically saved and put into the
configuration file /etc/serial.conf which will be used next time you start Linux.  At boot−time when
the serial module loads (or the like), a probe for UARTs is made automatically and reported on the screen.
But the IRQs shown may be wrong.  The second report of the same is the result of a script which usually does
no probing and thus provides no reliable information as to how the hardware is actually set.  It only shows
configuration data someone  wrote into the script or data that got saved in /etc/serial.conf. 

It may be that two serial ports both have the same IO address set in the hardware.  Of course this is not
permitted but it sometimes happens anyway.  Probing detects one serial port when actually there are two.
However if they have different IRQs, then the probe for IRQs may show IRQ = 0.  For me it only did this if I
first used setserial to give the IRQ a fictitious value. 

Boot−time Configuration 

When the kernel loads the serial module (or if the "module equivalent" is built into the kernel) then only
ttyS{0−3} are auto−detected and the driver is set to use only IRQs 4 and 3 (regardless of what IRQs are
actually set in the hardware).  You see this as a boot−time message just like as if setserial had been run. 

To correct possible errors in IRQs (or for other reasons) there may be a file somewhere that runs
setserial again.  Unfortunately, if this file has some IRQs wrong, the kernel will still have incorrect info
about the IRQs.  This file should run early at boot−time before any process uses the serial port.  In fact, your
distribution may have set things up so that the setserial program runs automatically from a start−up script at
boot−time.  More info about how to handle this situation for your particular distribution might be found in file
named "setserial..." or the like located in directory /usr/doc/ or /usr/share/doc/. 

Before modifying a configuration file, you can test out a "proposed" setserial command by just typing it
on the command line.  In some cases the results of this use of setserial will automatically get saved in
/etc/serial.conf when you shutdown.  So if it worked OK (and solved your problem) then there's no need to
modify any configuration file.  See  New configuration method using /etc/serial.conf. 

Configuration Scripts/Files 

Your objective is to modify (or create) a script file in the /etc tree that runs setserial at boot−time.  Most
distributions provide such a file (but it may not initially reside in the /etc tree).  In addition, setserial 2.15 and
higher often have an /etc/serial.conf file that is used by the above script so that you don't need to directly edit
the script that runs setserial.  In addition just using setserial on the command line (2.15+) may ultimately alter
this configuration file. 

So prior to version 2.15 all you do is edit a script.  After 2.15 you may need to either do one of three things: 1.
edit a script.  2. edit /etc/serial.conf or 3. run "setserial" on the command line which may result in
/etc/serial.conf automatically being edited.  Which one of these you need to do depends on both your
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particular distribution, and how you have set it up. 

Edit a script (required prior to version 2.15) 

Prior to setserial 2.15 (1999) there was no /etc/serial.conf file to configure setserial.  Thus you need to find the
file that runs "setserial" at boot time and edit it.  If it doesn't exist, you need to create one (or place the
commands in a file that runs early at boot−time).  If such a file is currently being used it's likely somewhere in
the /etc directory−tree.  But Redhat <6.0 has supplied it in /usr/doc/setserial/ but you need to move it to the
/etc tree before using it.  You might use "locate" to try to find such a file.  For example, you could type: locate
"*serial*". 

The script /etc/rc.d/rc.serial was commonly used in the past. The Debian distribution used
/etc/rc.boot/0setserial. Another file once used was /etc/rc.d/rc.local but it's not a good
idea to use this since it may not be run early enough. It's been reported that other processes may try to open
the serial port before rc.local runs resulting in serial communication failure. Today it's most likely in
/etc/init.d/ but it isn't normally intended to be edited. 

If such a file is supplied, it should contain a number of commented−out examples.  By uncommenting some of
these and/or modifying them, you should be able to set things up correctly.  Make sure that you are using a
valid path for setserial, and a valid device name.  You could do a test by executing this file manually
(just type its name as the super−user) to see if it works right. Testing like this is a lot faster than doing
repeated reboots to get it right. 

For versions >= 2.15 (provided your distribution implemented the change, Redhat didn't) it may be more
tricky to do since the file that runs setserial on startup, /etc/init.d/setserial or the like was not intended to be
edited by the user.  See  New configuration method using /etc/serial.conf. 

If you want setserial to automatically determine the uart and the IRQ for ttyS3 you would add something like: 

/sbin/setserial  /dev/ttyS3 auto_irq skip_test autoconfig

Do this for every serial port you want to auto configure.  Be sure to give a device name that really does exist
on your machine.  In some cases this will not work right due to the hardware.  If you know what the uart and
irq actually are, you may want to assign them explicitly with "setserial".  For example: 

/sbin/setserial /dev/ttyS3 irq 5 uart 16550A  skip_test

New configuration method using /etc/serial.conf

Prior to setserial version 2.15, the way to configure setserial was to manually edit the shell−script that ran
setserial at boot−time. See  Edit a script (after version 2.15: perhaps not).  Starting with version 2.15 (1999) of
setserial this shell−script is not edited but instead gets its data from a configuration file:
/etc/serial.conf.  Furthermore you may not even need to edit serial.conf because using the "setserial"
command on the command line may automatically cause serial.conf to be edited appropriately. 

This was intended so that you don't need to edit any file in order to set up (or change) what setserial does
each time that Linux is booted. But there are serious pitfalls because it's not really "setserial" that edits
serial.conf.  Confusion is compounded because different distributions handle this differently.  In addition, you
may modify it so that it works differently. 
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What often happens is this:  When you shut down your PC the script that runs "setserial" at boot−time is run
again, but this time it only does what the part for the "stop" case says to do:  It uses "setserial" to find out what
the current state of "setserial" is, and it puts that info into the serial.conf file.  Thus when you run
"setserial" to change the serial.conf file, it doesn't get changed immediately but only when and if you shut
down normally. 

Now you can perhaps guess what problems might occur.  Suppose you don't shut down normally (someone
turns the power off, etc.) and the changes don't get saved.  Suppose you experiment with "setserial" and forget
to run it a final time to restore the original state (or make a mistake in restoring the original state).  Then your
"experimental" settings are saved. 

If you manually edit serial.conf, then your editing is destroyed when you shut down because it gets changed
back to the state of setserial at shutdown.  There is a way to disable the changing of serial.conf at shutdown
and that is to remove "###AUTOSAVE###" or the like from first line of serial.conf.  In at least one
distribution, the removal of "###AUTOSAVE###" from the first line is automatically done after the first time
you shutdown just after installation.  The serial.conf file should contain some comments to explain this. 

The file most commonly used to run setserial at boot−time (in conformance with the configuration file) is
now /etc/init.d/setserial (Debian) or /etc/init.d/serial (Redhat), or etc.,  but it should not normally be edited.
For 2.15, Redhat 6.0 just had a file /usr/doc/setserial−2.15/rc.serial which you have to move to /etc/init.d/ if
you want setserial to run at boot−time. 

To disable a port, use setserial to set it to "uart none".  The format of /etc/serial.conf appears to be just
like that of the parameters placed after "setserial" on the command line with one line for each port.  If you
don't use autosave, you may edit /etc/serial.conf manually. 

BUG: As of July 1999 there is a bug/problem since with ###AUTOSAVE### only the setserial parameters
displayed by "setserial −Gg /dev/ttyS*" get saved but the other parameters don't get saved.  Use the −a flag to
"setserial" to see all parameters.  This will only affect a small minority of users since the defaults for the
parameters not saved are usually OK for most situations.  It's been reported as a bug and may be fixed by now. 

In order to force the current settings set by setserial to be saved to the configuration file (serial.conf) without
shutting down, do what normally happens when you shutdown: Run the shell−script
/etc/init.d/{set}serial stop.  The "stop" command will save the current configuration but the
serial ports still keep working OK. 

In some cases you may wind up with both the old and new configuration methods installed but hopefully only
one of them runs at boot−time. Debian labeled obsolete files with "...pre−2.15". 

IRQs

By default, both ttyS0 and ttyS2 will share IRQ 4, while ttyS1 and ttyS3 share IRQ 3.  But actually sharing
serial interrupts (using them in running programs) is not permitted unless you: 1. have kernel 2.2 or better,
and 2. you've complied in support for this, and 3. your serial hardware supports it.  See Serial−HOWTO:
Interrupt sharing and Kernels 2.2+. 

If you only have two serial ports, ttyS0 and ttyS1, you're still OK since IRQ sharing conflicts don't exist for
non−existent devices. 

If you add an internal modem and retain ttyS0 and ttyS1, then you should attempt to find an unused IRQ and
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set it both on your serial port (or modem card) and then use setserial to assign it to your device driver.  If IRQ
5 is not being used for a sound card, this may be one you can use for a modem.  To set the IRQ in hardware
you may need to use isapnp, a PnP BIOS, or patch Linux to make it PnP.  To help you determine which spare
IRQ's you might have, type "man setserial" and search for say: "IRQ 11". 

Laptops: PCMCIA 

If you have a Laptop, read PCMCIA−HOWTO for info on the serial configuration.  For serial ports on the
motherboard, setserial is used just like it is for a desktop.  But for PCMCIA cards (such as a modem) it's a
different story.  The configuring of the PCMCIA system should automatically run setserial so you shouldn't
need to run it.  If you do run it (by a script file or by /etc/serial.conf) it might be different and cause trouble.
The autosave feature for serial.conf shouldn't save anything for PCMCIA cards (but Debian did until 2.15−7).
Of course, it's always OK to use setserial to find out how the driver is configured for PCMCIA cards. 

14.4 Stty 

Introduction

stty does much of the configuration of the serial port but since application programs (and the getty
program) often handle it, you may not need to use it much.  It's handy if you're having problems or want to see
how the port is set up.  Try typing ``stty −a'' at your terminal/console to see how it's now set.  Also try typing it
without the −a (all) for a short listing which shows how it's set different than normal.  Don't try to learn all the
setting unless you want to become a serial guru.  Most of the defaults should work OK and some of the
settings are needed only for certain obsolete dumb terminals made in the 1970's. 

stty is documented in the man pages with a more detailed account in the info pages.  Type "man
stty" or "info stty". 

Whereas setserial only deals with actual serial ports, stty is used both for serial ports and for virtual
terminals such as the standard Linux text interface at a PC monitor.  For the PC monitor, many of the stty
settings are meaningless.  Changing the baud rate, etc. doesn't appear to actually do anything. 

Here are some of the items stty configures: speed (bits/sec), parity, bits/byte, # of stop bits, strip 8th bit?,
modem control signals, flow control, break signal, end−of−line markers, change case, padding, beep if buffer
overrun?, echo what you type to the screen, allow background tasks to write to terminal?, define special
(control) characters (such as what key to press for interrupt).  See the stty man or info page for more details.
Also see the man page: termios which covers the same options set by stty but (as of mid 1999) covers
features which the stty man page fails to mention. For use of some special characters see  Special (Control)
Characters

With some implementations of getty (getty_ps package), the commands that one would normally give to stty
are typed into a getty configuration file: /etc/gettydefs.  Even without this configuration file, the getty
command line may be sufficient to set things up so that you don't need stty. 

One may write C programs which change the stty configuration, etc. Looking at some of the documentation
for this may help one better understand the use of the stty command (and its many possible arguments).
Serial−Programming−HOWTO is useful.  The manual page: termios contains a description of the C−language
structure (of type termios) which stores the stty configuration in computer memory.  Many of the flag names
in this C−structure are almost the same (and do the same thing) as the arguments to the stty command. 
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Flow control options

To set hardware flow control use "crtscts".  For software flow control there are 3 settings: ixon, ixoff, and
ixany. 

ixany: Mainly for terminals.  Hitting any key will restarts the flow after a flow−control stop.  If you stop
scrolling with the "stop scroll" key (or the like) then hitting any key will resume scrolling. It's seldom needed
since hitting the "scroll lock" key again will do the same thing. 

ixon: Enables the port to listen for Xoff and to stop transmitting when it gets an Xoff.  Likewise, it will
resume transmitting if it gets an Xon. 

ixoff: enables the port to send the Xoff signal out the transmit line when its buffers in main memory are
nearly full.  It protects the device where the port is located from being overrun. 

For a slow dumb terminal (or other slow device) connected to a fast PC, it's unlikely the the PC's port will be
overrun.  So you seldom actually need to enable ixoff.  But it's often enabled "just in case". 

Using stty at a "foreign" terminal

Using stty to configure the terminal that you are currently using is easy.  Doing it for a different (foreign)
terminal or serial port may be impossible.  For example, let's say you are at the PC monitor (tty1) and want to
use stty to deal with the serial port ttyS2. Prior to about 2000 you needed to use the redirection operator
"<". After 2000 (provided your version of setserial is >= 1.17 and stty >= 2.0) there is a better method using
the −F option.  This will work when the old redirection method fails.  Even with the latest versions be warned
that if there is a terminal on ttyS2 and a shell is running on that terminal, then what you see will likely be
deceptive and trying to set it will not work.  See  Two interfaces at a terminal to understand it. 

The new method is ``stty −F /dev/ttyS2 ...'' (or −−file instead of F). If  ... is −a it displays all the stty settings.
The old redirection method (which still works in later versions) is to type ``stty ... </dev/ttyS2''.  If the new
method works but the old one hangs, it implies that the port is hung due to a modem control line not being
asserted.  Thus the old method is still useful for troubleshooting. See the following subsection for details. 

Old redirection method

Here's a problem with the old redirection operator (which doesn't happen if you use the newer −F option
instead).  Sometimes when trying to use stty, the command hangs and nothing happens (you don't get a
prompt for a next command even after hitting <return>).  This is likely due to the port being stuck because it's
waiting for one of the modem control lines to be asserted.  For example, unless you've set "clocal" to ignore
modem control lines, then if no CD signal is asserted the port will not open and stty will not work for it
(unless you use the newer −F option).  A similar situation seems to exist for hardware flow control.  If the
cable for the port doesn't even have a conductor for the pin that needs to be asserted then there is no easy way
to stop the hang. 

One way to try to get out of the above hang is to use the newer −F option and set "clocal" and/or "crtscts" as
needed.  If you don't have the −F option then you may try to run some program (such a minicom) on the port
that will force it to operate even if the control lines say not to.  Then hopefully this program might set the port
so it doesn't need the control signal in the future in order to open: clocal or −crtscts.  To use "minicom" to do
this you likely will have to reconfigure minicom and then exit it and restart it.  Instead of all this bother, it
may be simpler to just reboot the PC. 
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The old redirection method makes ttyS2 the standard input to stty. This gives the stty program a link to the
"file" ttyS2 so that it may "read" it.  But instead of reading the bytes sent to ttyS2 as one might expect, it uses
the link to find the configuration settings of the port so that it may read or change them.  Some people tried to
use ``stty ... > /dev/ttyS2'' to set the terminal.  This will not do it. Instead, it takes the message normal
displayed by the stty command for the terminal you are on (say tty1) and sends this message to ttyS2. But it
doesn't change any settings for ttyS2. 

Two interfaces at a terminal 

When using a shell (such as bash) with command−line−editing enabled there are two different terminal
interfaces (what you see when you type stty −a).  When you type in modern shells at the command line you
have a temporary "raw" interface (or raw mode) where each character is read by the command−line−editor as
you type it.  Once you hit the <return> key, the command−line−editor is exited and the terminal interface is
changed to the nominal "cooked" interface (cooked mode) for the terminal.  This cooked mode lasts until the
next prompt is sent to the terminal (which is only a small fraction of a second).  Note that one never gets to
type anything to this cooked mode but what was typed in raw mode gets executed while in cooked mode. 

When a prompt is sent to the terminal, the terminal goes from "cooked" to "raw" mode (just like it does when
you start an editor since you are starting the command−line editor).  The settings for the "raw" mode are based
only on the basic settings taken from the "cooked" mode.  Raw mode keeps these setting but changes several
other settings in order to change the mode to "raw".  It is not at all based on the settings used in the previous
"raw" mode.  Thus if one uses stty to change settings for the raw mode, such settings will be permanently lost
as soon as one hits the <return> key at the terminal that has supposedly been "set". 

Now when one types stty to look at the terminal interface, one may either get a view of the cooked mode or
the raw mode.  You need to figure out which one you're looking at.  It you use stty from another (foreign)
terminal then you will see the raw mode settings.  Any changes made will only be made to the raw mode and
will be lost when someone presses <return> at the terminal you tried to "set". But if you type a stty command
at your terminal (without the −F option or redirection) and then hit <return> it's a different story. The
<return> puts the terminal in cooked mode.  Your changes are saved and will still be there when the terminal
goes back into raw mode (unless of course it's a setting not allowed in raw mode). 

This situation can create problems.  For example, suppose you corrupt your terminal interface.  To restore it
you go to another terminal and "stty −F dev/ttyS1 sane" (or the like).  It will not work!  Of course you can try
to type "stty sane ..." at the terminal that is corrupted but you can't see what you typed.  All the above not only
applies to dumb terminals but to virtual terminals used on a PC Monitor as well as to the terminal windows in
X.  In other words, it applies to almost everyone who uses Linux. 

Luckily, when you start up Linux, any file that runs stty at boot−time will likely deal with a terminal (or
serial port with no terminal) that has no shell running on it so there's no problem for this special case. 

Where to put the stty command ? 

Should you need to have stty set up the serial interface each time the computer starts up then you need to
put the stty command in a file that will be executed each time the computer is started up (Linux boots).  It
should be run before the serial port is used (including running getty on the port).  There are many possible
places to put it.  If it gets put in more than one place and you only know about (or remember) one of those
places, then a conflict is likely. So make sure to document what you do. 
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One place to put it would be in the same file that runs setserial when the system is booted.  The location is
distribution and version dependent.  It would seem best to put it after the setserial command so that the low
level stuff is done first.  If you have directories in the /etc tree where every file in them is executed at
boot−time (System V Init) then you could create a file named "stty" for this purpose. 

14.5 Terminfo & Termcap (brief) 

See  Terminfo and Termcap (detailed) for a more detailed discussion of termcap.  Many application programs
that you run use the terminfo (formerly termcap) data base.  This has an entry (or file) for each model or type
(such as vt100) of terminal and tells what the terminal can do, what codes to send for various actions, and
what codes to send to the terminal to initialize it. 

Since many terminals (and PC's also) can emulate other terminals and have various "modes" of operation,
there may be several terminfo entries from which to choose for a given physical terminal.  They usually will
have similar names.  The last parameter of getty (for both agetty and getty_ps) should be the terminfo name of
the terminal (or terminal emulation) that you are using (such as vt100). 

The terminfo does more than just specify what the terminal is capable of doing and disclose what codes to
send to the terminal to get it to do those things.  It also specifies what "bold" will look like (will it be reverse
video or will it be high intensity, etc.), what the cursor will look like, if the letters will be black, white, or
some other color, etc.  In PC terminology these are called "preferences".  It also specifies initialization codes to
send to the terminal (analogous to the init strings sent to modems).  Such strings are not automatically sent to
the terminal by Linux.  See  Init String.  If you don't like the way the display on the screen looks and behaves
you may need to edit (and then update) the terminfo (or termcap) file.  See  Terminfo Compiler (tic) for how to
update. 

14.6 Setting TERM and TERMINFO

These are two environment variables for terminals: TERM and TERMINFO, but you may not need to do
anything about them.  TERM must always be set to the  type of the terminal you are using (such as vt100).  If
you don't know the type (name) see  What is the terminfo name of my terminal ?.  TERMINFO contains the
path to the terminfo data base, but may not be needed if the database is in a default location (or TERMINFO
could be set automatically by a file that comes with your distribution of Linux). You may want to look at
Compiled database locations. 

Fortunately, the getty program usually sets TERM for you just before login.  It just uses the terminal type that
was specified on getty's command line (in /etc/inittab).  This permits application programs to find the name of
your terminal and then look up the terminal capabilities in the terminfo data base.  See  TERM Variable for
more details on TERM. 

If your terminfo data base can't be found you may see an error message about it on your terminal.  If this
happens it's time to check out where terminfo resides and set TERMINFO if needed.  You may find out where
the terminfo database is by searching for a common terminfo file such as "vt100" using the "locate"
command.  Make sure that your terminal is in this database.  An example of setting TERMINFO is: export
TERMINFO=/usr/share/terminfo (put this in /etc/profile or the like).  If the data for your terminal in this data
base is not to your liking, you may need to edit it.  See  Terminfo & Termcap (brief). 
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What is the terminfo name of my terminal ? 

You need the exact name in order to set the TERM environment variable or to give to getty.  The same
name should be used by both the termcap and terminfo databases so you only need to find it once.  A terminal
usually has alias names but if more than one name is shown, use the first one. 

To find it, try looking at the /etc/termcap... file (if you have it). If not, then either look at the terminfo trees
(see  Compiled database locations) or try to find the terminfo source code file (see  Source−code database
locations. 

14.7 Rarely Needed /etc/ttytype File

The configuration file /etc/ttytype is used to map /dev/ttySn's to terminal names per terminfo.  tset uses it, but
if the TERM environment variable is already set correctly, then this file is not needed. Since the Linux getty
sets TERM for each tty, you don't need this file. In other Unix−like systems such as FreeBSD, the file
/etc/ttys maps ttys to much more, such as the appropriate getty command, and the category of connection
(such as "dialup").  An example line of Linux ttytype: vt220 ttyS1 

14.8 Login Restrictions 

By default, the root user may not login from a terminal.  To permit this you must create (or edit) the file
/etc/securetty per the manual page "securetty".  To restrict logins of certain users and/or certain terminals, etc.
edit /etc/login.access (this replaces the old /etc/usertty file ??).  /etc/login.def determines if /etc/securetty is to
be used and could be edited so as to make /etc/securetty not needed (or not used).  /etc/porttime restricts the
times at which certain ttys and users may use the computer.  If there are too many failed login attempt by a
user, that user may be prohibited from ever logging in again.  See the man page "faillog" for how to control
this. 

14.9 Run Command Only If TERM=my_term_type

Sometimes there are commands that one wants to execute at start−up only for a certain type of terminal.  To
do this for the stty command is no problem since one uses the redirection operator < to specify which
terminal the command is for.  But what about shell aliases or functions?  You may want to make a function for
the ls command so it will color−code the listing of directories only on color terminals or consoles.  For
monochrome terminals you want the same function name (but a different function body) which will use
symbols as a substitute for color−coding.  Where to put such function definitions that are to be different for
different terminals? 

You may put them inside an "if" statement in /etc/profile which runs at startup each time one logs on.  The
conditional "if" statement defines certain functions, etc. only if the terminal is of a specified type. 

Example for ls Function 

While much of what this if statement does could be done in the configuration file for dircolors, here's an
example for the case of the bash shell: 

if [ "$TERM" = linux ]; then
    eval `dircolors`;
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elif [ "$TERM" = vt220 ]; then
    ls () { command ls −F $* ; }# to export the function ls():
    declare −xf ls
else echo "From /etc/profile: Unknown terminal type $TERM"
fi

14.10 Character Mapping: mapchan 

There is a program named "mapchan" which will map characters (bytes) typed at a terminal keyboard (input)
into different characters per a user−supplied mapping table.  It can also map characters which are sent to the
screen (output).  This is nice for remapping the keyboard for foreign language alphabets.  Most distributions
don't seem to supply it (let me know if any do).  Source code by Yura Kalinichenko (Ukraine) is at
http://www.kron.vinnica.ua/free/download/

15. Terminfo and Termcap (detailed) 

15.1 Intro to Terminfo

Terminfo (formerly Termcap) is a database of terminal capabilities and more.  For every (well almost) model
of terminal it tells application programs what the terminal is capable of doing.  It tells what escape sequences
(or control characters) to send to the terminal in order to do things such as move the cursor to a new location,
erase part of the screen, scroll the screen, change modes, change appearance (colors, brightness, blinking,
underlining, reverse video etc.). After about 1980, many terminals supported over a hundred different
commands (some of which take numeric parameters). 

One way in which terminfo gives the its information to an application program is via the "ncurses" functions
that a programmer may put into a C program.  For example, if a program wants to move the cursor to row 3,
col 6 it simply calls: move(3,6).  The move() function (part of ncurses) knows how to do this for your terminal
(it has read terminfo).  So it sends the appropriate escape sequence to the terminal to make this particular
move for a certain terminal. Some programs get info directly from a terminfo files without using ncurses.
Thus a Linux package that doesn't require ncurses may still need a terminfo file for your terminal. 

The terminfo abbreviations are usually longer than those of termcap and thus it's easier to guess what they
mean.  The manual pages for terminfo are more detailed (and include the old termcap abbreviations).  Also, the
termcap entries had a size limitation which is not present for terminfo.  Thus, unless you are already
committed to working with termcap, it's suggested you use terminfo. 

15.2 Terminfo Database 

Introduction

The terminfo database is compiled and thus has a source part and a compiled part.  The old termcap database
has only a source part but this source can, by a single command, be both converted to terminfo source and
then compiled.  Thus you may get by without having any terminfo source since the termcap source can create
the compiled terminfo database.  To see a display of the database for the terminal you're now using (including
a PC monitor) type "infocmp" and you should see the source terminfo "file" for it. 
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To see if your terminal (say vt100) is in the terminfo data base type "locate vt100".  If you need to find the
terminfo name for your terminal, explore the listing of files in the compiled database or see What is the
terminfo name of my terminal ?

Where is the database located ?

Compiled database locations 

Typing "locate vt100" may show /usr/lib/terminfo/v/vt100, /usr/share/terminfo/v/vt100,
/home/.../.terminfo/v/vt100, and/or /etc/terminfo/v/vt100.  All these are possible locations of the compiled
terminfo files.  Although the /etc/terminfo directory is not a standard location for it, having a few terminal
types there could be useful in case the /usr directory is not accessible.  For example /usr could be on a separate
disk or partition that failed to mount. Normally, programs that use your main terminfo data base are able to
find it if it's in at least one of the locations mentioned above. Otherwise the environment variable
TERMINFO may be set to the path to this database.  Example: TERMINFO=/usr/share/terminfo 

For the Debian Distribution of Linux, several commonly used terminals (including the monitor−console) are
in the ncurses−term package. These are put into /etc/terminfo/.  All of the terminals in the database are in the
ncurses−bin package and go into /usr/share/terminfo/. 

If the compiled terminfo is in more than one location, everything is usually OK until someone installs new
terminfo files (from a newer distribution, from the net, by editing the old one, etc.).  Each new terminfo file
needs replace all the existing older copies of that file (at various locations) unless you abolish redundant
locations.  If you don't ensure this gets done, then some application programs could wind up still finding and
using the old (and possibly buggy) terminfo data that sill exists in a "possible" location.  Setting the
environment variable TERMINFO to the up−to−date location (as mentioned above) would help avoid this
problem. 

Source−code database locations 

While the source−code file may  not be installed on your computer there's another way to get the source−code
if you have the compiled code.  Just use the "infocmp" command. 

The source code file (for all terminals) may be /etc/termcap and/or terminfo.src (or another name).  See the
man pages: terminfo(5) or termcap(5) for the format required to create (or modify) these source files.  The file
terminfo.src may be in various locations on your computer or it may not be included with your Linux
distribution.  Use the locate command to try to find it.  It is available on the web at
http://www.tuxedo.org/terminfo/. 

Terminfo Compiler (tic) 

The data in the source files is compiled with the "tic" program which is capable of converting between
termcap format and terminfo format.  Thus you can create a compiled terminfo data base from termcap
source.  The installation program which was used to install Linux probably installed the compiled files on
your hard disk so you don't need to compile anything unless you modify /etc/termcap (or terminfo.src ).  "tic"
will automatically install the resulting compiled files into a terminfo directory ready to be used by application
programs.  Which location it's installed in depends on ... See "man tic" for the explanation. 
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Look at Your Terminfo 

It's a good idea to take a look at the terminfo entry for the terminal you are using (source code of course) and
read the comments. A quick way to inspect it without comments is to just type "infocmp". But the comments
may tell you something special about the terminal such as how you need to set it up so that it will work
correctly with the terminfo database. 

Deleting Data Not Needed

In order to save disk space, one may delete all of the terminfo database except for the terminals types that you
have (or might need in the future).  Don't delete any of the termcaps for a "Linux terminal" (the console) or
the xterm ones if you use X Window.  The terminal type "dumb" may be needed when an application program
can't figure out what type of terminal you are using.  It would save disk space if install programs only installed
the terminfo for the terminals that you have and if you could get a termcap for a newly installed terminal over
the Internet in a few seconds. 

15.3 Bugs in Existing Terminfo Files (and Hardware)

Unfortunately, there are a number of bugs in the terminfo and termcap files.  In addition, many of these
terminfo files are incomplete and do not define certain features available on the terminals.  Sometimes you
can get by without modifying the terminfo but in other cases you need to modify it or possibly use another
emulation that has a good terminfo. 

The sad state of the supplied terminfo files is due to a number of reasons.  One is that during the 1980's when
many of them were written (often in termcap format), application programs did not utilize more advanced
terminal features.  Thus if such feature were not in the termcap (or terminfo) file, no one complained.  Today,
programs such as vim use "context highlighting" and minicom uses the terminal's graphics character set.
These often need more definitions to be added to the old termcap.  This may (or may not) have already been
done. 

Most terminals had hardware bugs (in their firmware) and sometimes these were "fixed" by modifying the
termcap.  Then the manufacturer might send out replacement chips which would fix the bug.  Not all owners
would bother to get the replacement chips.  Thus there may be 2 or more terminfos for your terminal,
depending on what firmware chips it has in it.  This situation was often not noted in the termcap and only one
termcap may be supplied with Linux.  Some hardware bugs which existed for features that were almost never
used in the past likely never did get fixed.  Also, some reported hardware bugs may never have been fixed
since they were not of much significance at the time or because the company went out of business, etc. 

15.4 Modifying Terminfo Files

To do this you need a manual for your terminal showing what escape sequences it uses.  Newer manuals from
the 1990's often don't show this.  You also need a terminfo manual (the man page "terminfo" is one).  After
you edit the terminfo source file you compile it using "tic".  "tic" should automatically put the compiled
terminfo file in the correct directory reserved for it. 

If you would like to find a better terminfo entry for a certain terminal than the one supplied, you might try
searching the Internet (but what you find could be worse).  If your new terminfo entry is better than the old
one and it seems stable (you've used it for a while with no problems) then you should send a copy to the
maintainer of terminfo as noted at the start of the source file for terminfo (or termcap). 
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15.5 Init String 

Included in the terminfo are often a couple of initialization strings which may be sent to the terminal to
initialize it.  This may change the appearance of the screen, change what mode the terminal is in, and/or make
the terminal emulate another terminal.  An initialization string is not automatically sent to the terminal to
initialize it.  One might expect that the getty program should do this but if it did, one could make a change to
the set−up at the terminal and this change wouldn't be happen because the init string would automatically
cancel it.  Application programs don't seem to initialize either.  To do this you must use a command given on
the command line (or in a shell script such as /etc/profile) to send the init strings.  Such commands are: "tset",
"tput init", or "setterm −initialize".  Sometimes there is no need to send the init strings since the terminal may
set itself up correctly when it is powered on (using options/preferences one has set up and saved in the
non−volatile memory of the terminal). 

15.6 TERM Variable 

The Environment variable TERM should be set to the name of terminal which you are using.  If TERM hasn't
been set yet and you don't know the name of your terminal see  What is the terminfo name of my terminal ?.  It
is normally set by the terminal_type parameter passed to the getty program (look at it in the /etc/inittab file).
This name must be in the Terminfo data base.  Just type "set" at the command line to see what TERM is set to
(or type: tset −q).  At a console (monitor) TERM is set to "linux" which is the PC monitor emulating a
fictitious terminal model named "linux".  Since "linux" is close to a vt100 terminal and many text terminals
are also, the "linux" designation will sometimes work as a temporary expedient with a text terminal. 

If more than one type of terminal may be connected to the same port (/dev/tty...) (for example, if there is a
switch to permit different terminal types to use the same serial port, or if the port is connected to a modem to
which people call in from different types of terminals) then TERM needs to be set each time someone
connects to the serial port.  There is often a query escape sequence so that the computer may ask the terminal
what type it is.  Another way is to ask the user to type in (or select) the type of terminal s/he is using. You
may need to use tset for this or write a short shell script to handle this. 

One way to do this is to use "tset" (see the manual page).  tset tries to determine the terminal name of the
terminal you are using.  Then it looks up the data in terminfo and sends your terminal an init string. It can also
set the value of TERM.  For example, a user dials in and logs in.  The .profile login script is executed which
contains within it the following statement: eval `tset −s ?vt100`.  This results in: The user is asked if s/he is
using a vt100.  The user either responds yes or types in the actual terminal type s/he is using.  Then tset sends
the init string and sets TERM to this terminal name (type). 

15.7 Terminfo/Termcap Documents 

manual pages for terminfo(5) (best) and/or termcap(5). The Termcap Manual (2nd ed.) by Richard
M. Stallman is a GNU manual which is somewhat obsolete since it doesn't include terminfo.

• 

the files: terminfo.src and /etc/termcap have info about various versions of termcap files, naming
conventions for terminals, and special capabilities code named u6−u9. If you don't have one, go to
http://tuxedo.org/terminfo/

• 

"Termcap and Terminfo" is a book published by O'Reilly in 1988.• 
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16. Using the Terminal

16.1 Intro to Using the Terminal

This section is about controlling the terminal−computer interface and/or changing the terminal set−up while
using the terminal.  It explains (or points to explanations of) how the user of a terminal can control and inspect
the interface and how to use various commands provided by the device driver.  It does not explain how to use
the many application programs, shells or most Linux utilities.  Two commands commonly used at the terminal
are: 

clear (to clear the screen)• 
reset (to reset the terminal• 
setterm −reset (alternative for "reset" in case of bug)• 

16.2 Starting Up the Terminal

Of course the power must be on for the terminal to work.  If you don't see a login prompt hit the "return" (or
"enter") key a few times. Then type your account name (followed by a return/enter) and your password when
prompted for it (also followed by return/enter).  Make sure not to type all capital letters.  If you do, the
computer may think that you have an old terminal that can't send lowercase letters and the serial driver may
set itself up to send only capital letters to the terminal. 

If nothing happens, make sure that both the host computer and the terminal are OK.  If the host computer is
shut down (no power) what you type at the terminal keyboard may appear on the screen since the transmit
and receive pins at the computer may be connected together resulting in echoing of characters by an "off"
computer.  If you can't log in when the host computer is running, see  Trouble−Shooting. 

16.3 Terminal (Serial) Device Driver

When typing at the command line, the shell (such as the Bash shell) is reading what you type and reacting to
it.  What you type first passes thru the terminal driver part of your operating system. This driver may translate
certain characters (such as changing the "return" character generated by the "return" key into a "new−line"
character for Linux files).  It also recognizes certain control codes which you may type at the keyboard such
as ^C to interrupt the execution of a program.  It also normally echoes what you type back to the display.
Stty may be used to configure how this terminal driver behaves, including disabling some (or all) of its
functionality. 

16.4 Problems with Editors

There may be some problems with using both emacs and vi on some terminals.  A few terminals have no
escape key (ESC) so you may need to type Ctrl−[ to get ESC. 

emacs

If software flow control exists, then the ^S command in emacs will freeze the display.  The ^Q command will
unfreeze the display.  One fix is to map this to another key−press by configuring emacs that way. Some
terminals have meta keys although you may need to setup the terminal to create a meta key. 
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vi and Cursor−Keys 

Vi uses the esc−key as a command to exit insert mode. Unfortunately for most terminals the arrow−keys send
an an escape sequence (starting with the ESC character) to the host.  Vi must distinguish between these two
meanings of ESC.  A smart vi (such as vim if configured for it) is able to detect the difference by noting the
time between the ESC and the next key.  If it's a short time, then it's likely that a cursor key was pressed.  Use
"help cursor−keys" in vim to find out more. 

Here's another way to fix this.  On VT terminals the left−arrow−key may be either set to send ESC [ D or ESC
O D.  The other arrow keys are similar but use A, B, and C instead of D.  If you're having problems, choose
ESC [ D since the "O" in the other alternative could be interpreted by vi as a command to "Open a line".  The
"[" should be interpreted by vi to mean that an arrow−key has been pressed.  ESC [ D will be sent provided
"Cursor Key Application Mode" has not been set. ESC [ D is normally the default so everything is seemingly
OK.  Except that many termcaps contain a string (not the init string) which sets what you want to avoid:
"Application Mode".  Editors may send this string to the terminal when the editor starts up.  Now you are in
trouble. 

This string has the termcap code "ks" (smkx in terminfo) meaning enable the function (and related) keys
(including the arrow keys).  An application enables these keys by sending the "ks" string to the terminal.
Whoever wrote the termcap reasoned that if an application wants to enable these keys, then they should be
put into "Application Key Mode" since this is an "application", but you don't want this. 

The Linux console has no "ks" string so you can't fall into this trap at the console.  For other terminals you
may need to edit the termcap (or terminfo) or use another termcap entry.  You need to change not only the
"ks" string but also the termcap definitions of what they send: kd, kl, kr, ku.  Then run tic to install it. 

For vim (vi iMproved) there is a way to set it up to work OK with ESC O D (so you don't need to edit
termcap): See vim help for "vt100−cursor−keys".  You may run "gitkeys" and then press your cursor keys to
see what they send but they may be set to send something different when you're in an editor. 

16.5 Bugs in Bash 

There have been problems with the readline interface to the Bash shell.  Bash 2.01 (1998) had a readline
interface which was quite corrupted if one used a dumb terminal.  This was fixed in later versions.  One
problem still outstanding is that if certain terminal keys send bytes with the high order bit set to 1, then Bash
seems to ignore the meaning for them as defined in a terminfo entry.  I've reported this as a bug in Bash.  Other
programs such as the vim editor and the lynx browser work OK with such keys. 

To work around this problem one may define what these keys should do in Bash by putting such definitions
into /etc/inputrc. For example, A Wyse 60 will send D0−D3 when the arrow−keys are hit provided the
terminal is in "application key mode".  After modifying the terminfo to reflect this, they still wouldn't work on
the command line in the Bash shell.  So I explicitly defined the arrow−keys in /etc/inputrc like this: 

# Arrow keys in 8 bit keypad mode: Sends d0−d4.  −ap means application.
$if term=wy60−25−ap
set enable−keypad on
"\xd0":         backward−char
"\xd1":         forward−char
"\xd2":         next−history
"\xd3":         previous−history
$endif
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If the terminal is already in "application key mode" there's no need to "set enable−keypad on".
enable−keypad will send the terminal the escape sequence named smkx in terminfo (which for wyse60 is
\E 3 and makes the arrow keys send D1−D3).  Many other application send this without needing to be told to
do so. 

16.6 Color ls Corruption

If ls is corrupting your terminal emulation with the color feature, turn it off.  ls −−color, and ls
−−colour all use the color feature.  Some installations have ls set to use color by default.  Check
/etc/profile, etc.  for ls  aliases. See  Example for ls Function for how to have ls do color for the
console and do monochrome for terminals. 

16.7 Display Freezes (hung terminal) 

The symptom of a hung terminal is where what you type doesn't display on the terminal (or in some cases
displays but doesn't do anything). If what you type is invisible (or does nothing) type ^Q to restart flow (if
flow control stopped it).  Hanging may also be due to:
Sent terminal binary or Abnormally exited a program
If you didn't do any of these two, then the program you're running could by buggy or you interaction with it
fatally illegal. 

If you want to quit the program you were running and you can't do it by the usual methods (some programs
have special keys you must hit to exit) then try killing it from another terminal using "top" or "kill". If the
process refuses to die, then kill it with signal 9 from top (or use "kill" on the command line). The "9" type of
forced exit may leave some temporary files lying around as well as a corrupted interface. If this doesn't work,
killing the login shell should result in a startup of getty with a new login prompt.  If all else fails, you may
need to reboot the computer or even power it down.  Just rebooting may not alter the possibly corrupted
content of the serial port hardware registers. 

People new to Linux may unintentionally press Ctrl−S (^S) (or the "No Scroll" key) which mysteriously
freezes the screen (although that is what this key is supposed to do if you use software flow−control).  To
restore normal screen interaction, press Ctrl−Q (^Q).  Note that everything typed during the "freeze" gets
executed but you don't see any report of this until you hit ^Q.  Thus when it's frozen, don't type anything
drastic that might destroy files, etc.  One argument for using hardware flow−control is to prevent such freezes. 

16.8 Corrupted Terminal Interface 

This includes the case of a "frozen display" = "hung terminal" of the previous section. 

Symptoms and some fixes 

When the display doesn't look right, or when what you type doesn't display correctly (if at all), or nothing
happens when you type a command, you may have a corrupted terminal interface.  In rare cases, when the
serial port hardware gets itself corrupted, the only fix may be to cycle power (turn off the PC and reboot).  In
some cases just cycling power for the terminal will fix it.  Sometimes logging in again will solve the problem.
To do this, kill the shell process running on the terminal (or kill getty if it's running).  You may do this from
another terminal.  Once killed, a new getty process respawns which hopefully will end the corruption.
Recycling power (or resetting) for the terminal may help too. 
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The corruption may be due to things such as: 

A bug in the program you're using (including a program which erroneously assumes that you are
using a terminal of type "linux")

• 

A hardware failure (including an obscure hardware defect that you can normally live with)• 
Incorrect configuration (including an error in the terminfo or the terminal type)• 

If everything was working normally but it suddenly goes bad, it may be that the interface got corrupted by
something you did.  Three mistakes you might have made to corrupt the interface are: 

Sent terminal binary• 
Abnormally exited a program• 
Typed ctrl−S by mistake• 

Sent terminal binary characters 

Your terminal will change its characteristics if sent certain escape sequences or control characters.  It you
inadvertently try to display a binary file, it might by chance contain such sequences which may put your
terminal into some strange mode of operation or even make it unusable.  Always view or edit a binary file
with programs designed for that purpose so that this doesn't happen.  Most editors and pagers will handle
binary OK so as not to corrupt the interface.  Some may display a message telling you that they can't edit
binary.  But you're likely to corrupt things if you: "cat ...." or "cp .... /dev/tty.." or run a program which sends
binary output to "standard output" (unless you redirect such output with >, etc.). 

Corruption can also happen when using a communications program where a remote computer may send
binary to your screen.  There are numerous other ways it can happen so be prepared for it.  Even a supposedly
text file could contain unwanted control codes. 

To fix this problem reset the terminal.  Type either just "reset" (may be broken) or "setterm −reset" (followed
by a <return> of course).  You may not be able to see what you're typing.  This will send the reset string from
the terminfo entry to the terminal.  As an alternative to this, if the correct set−up has been saved inside the
terminal then pressing a special key(s) (perhaps in setup mode) may restore the settings.  Then you might still
need to use "tset" to send the init string if you use it to set up your terminal. 

Reset command was broken but now fixed

Note that in 2000 the "reset" command appeared to be broken for terminals that needed "clocal" set since
"reset" seemed to unset "clocal".  In 2001 it appears to be fixed so you may not need to read the rest of this
paragraph.  If you have this problem, using "reset" will only make the situation worse by disabling
communication between the terminal and computer.  You will likely need to log in again and hope the getty
sets "clocal".  If you see a login prompt without asking for it, you're in luck.  Otherwise see  Symptoms and
some fixes for how to get a login prompt.  You should try out "reset" before you need it and use "setterm
−reset" if "reset" logs you out or otherwise doesn't work right.  I submitted a bug report in Mar. 2000 but
never got a "fixed" notice. 

Character corruption

For the case where you see strange "graphic" characters instead of the normal ones, pressing ^O may switch
back to the normal letters. The "reset" command also does this but it resets everything else too. 
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There's the case where all letters have the wrong attribute (too dim, bright, blinking, or even invisible :−) but
the whitespace created by tab characters is normal.  This was caused by an escape sequence which set this
attribute but the attribute doesn't apply to the whitespace created by tab characters.  Fix by resetting, etc. 

Abnormally exited a program 

Large application programs (such as editors) often use the stty command (or the like) in their code to
temporarily change the stty configuration when you are running the program.  This may put the device driver
into "raw" mode so that every character you type goes directly thru to the application program.  Echoing by
the driver is disabled so that everything you see on the screen comes directly from the application program.
Thus many control commands (such as ^C) may not work within such applications. 

When you tell such an application to quit, the application program first restores the stty settings to what they
were before the application program started.  If you abnormally exit the program then you may still be in "raw
mode" on the command line.  You should suspect this has happened when what you type no longer displays
on the screen. 

To get out of raw mode and restore the normal stty settings type "stty sane".  However, you must type this just
after a "return" and end it with a "return".  But hitting the "return" key doesn't do the job since the "return"
code no longer gets translated to the new−line characters that the shell is waiting for.  So just type new−line
(^J) instead of "return".  The "sane" terminal interface may not be exactly the same as the normal one but it
usually works.  "stty sane" may also be useful to get out of a corrupted interface due to other causes. 

16.9 Special (Control) Characters 

A number of control characters which you may type at the keyboard are "caught" by the terminal driver and
perform various tasks.  To see these control commands type: stty −a and look at lines 2−4.  They are tersely
explained in the stty manual pages.  They may be changed to different control characters or disabled using the
stty command.  Thus your control characters might be different than those described below. They are used for
command−line editing, interrupting, scrolling, and to pass the next character thru transparently. 

Command−Line Editing

While the terminal driver has a few commands for command−line editing, some shells have a built−in real
editor (such as "readline" in the Bash shell).  Such an editor is normally on by default so you don't need to do
anything to enable it.  If it's available you don't need to learn many of the following commands although they
often still work along with the command−line editor.  The most important to learn are ^C (interrupt), ^D, and
how to stop scrolling. 

Delete−key (shown by stty as ^?) erases the last character• 
^U kills (deletes) the line• 
^W deletes a word backwards• 
^R reprints the line.  Useful mainly on hard copy terminals ??• 

Interrupting (& Quit, Suspend, EOF, Flush)

^C interrupts.  Exits the program and returns you to the command−line prompt.• 
^/ quits.  Same as interrupt ^C but weaker.  Also dumps a "core" file (which you likely have no use
for) into your working directory.

• 
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^Z suspends.  Stops the program and puts it in the background. Type fg to restart it.• 
^D end of file.  If typed at the command−line prompt, exits the shell and goes to where you were
before the shell started.

• 

^O flush (or discard).  Not yet implemented in Linux (but proposed).  Sends output to /dev/null.• 
^T display driver status.  Not yet implemented in Linux (but proposed).  Displays a status line for the
interface (number of bytes sent, etc.).

• 

Stop/Start Scrolling

If what you want to see scrolls off the bottom of the screen, you may prevent this by sending a "stop" signal
(^S or Xoff) to the host (provided Xon−Xoff  Flow Control is enabled).  Send a "start signal to resume (^Q or
Xon).  Some terminals have a "No Scroll" key which will alternately send Xoff and Xon or possibly send the
hardware flow control signals ??  Here's what ctrl−S (^S) and ctrl−Q (^Q) do: 

^S stops scrolling (Xoff)• 
^Q resume scrolling (Xon)• 

If you want to both stop scrolling and quit, use ^C.  If you want to stop scrolling to do something else but
want to keep the program that was generating the output in memory so you can resume scrolling later, use ^Z
suspend. 

An alternative scrolling method is to pipe the output thru a pager such as more, less, or most.  However, the
output might not be standard output but could be error output which the pager doesn't recognize.  To fix this
you may need to use redirection "2>&1" to get the pager to work OK.  It is often simpler to just use ^S and ^Q
unless you need to scroll backwards. 

At a PC console (emulating a terminal) you may scroll backwards by using Shift−PageUp.  This is frequently
needed since the scrolling is often too fast to stop using ^S.  Once you've scrolled backwards Shift−PageDown
will scroll forward again. 

Take next character literally

^V sends the next character typed (usually a control character) directly thru the device driver with no action
or interpretation. Echoed back are two ASCII characters such as ^C. 

16.10 Viewing Latin1 Files on a non−Latin1 terminal

Some "text" files are 8−bit Latin1 (=ISO−8859−1).  See  Character−Sets.  If you have a terminal that will not
display Latin1 (or don't have the Latin1 character set installed), then certain symbols (such as a bullet) will
display wrong. When viewing manual pages (they are Latin1) you may give the option −7 to man so as to
translate everything to ASCII.  Are there some pagers that make these translations ?? 

16.11 Eliminating Overstriking in Files

If one uses the "man" command to view a manual page but instead redirects the output to a file, that file will
have overstrikes in it. Overstrikes are where some printed characters appear bold by printing them twice in
the same location.  Thus to print an overstrike character the file contains a backspace after the character and
then the same character repeated.  If this is in a file, it's fine if you are going to print it on a printer (unless the
normal output from the printer is so darks that overstriking makes little improvement).  But it's not so good if
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you want to use the file to email or edit. 

One way to get rid of the overstrikes is to use the "ul" (underline) command.  You type: ul −t dumb
my_overstruck_file > output_file The ul command converts overstrikes to bold for whatever terminal is
specified and adds escape sequences to the output_file to generate the bold.  But the terminal of type "dumb"
has no escape sequences so you get the desired result.  There are other ways to do this but this is a possible
use for a terminal of type "dumb". 

16.12 Inspecting the Interface

These utility programs will provide information about the terminal interface: 

gitkeys: shows what byte(s) each key sends to the host.• 
tty: shows what tty port you are connected to.• 
set: shows the value of TERM (the terminfo entry name)• 
stty −a: shows all stty settings.• 
setserial −g /dev/tty?? (you fill in ??) shows UART type, port address and IRQ number.• 
infocmp: shows the current terminfo entry (less comments)• 

16.13 Changing the Terminal Settings 

The terminal settings are normally set once when the terminal is installed using the setup procedures in the
terminal manual.  However, some settings may be changed when the terminal is in use.  You normally would
not give any "stty" of "setserial" commands when the terminal is in use as they are likely to corrupt the
terminal interface.  However, there are changes you may make to the appearance of the terminal screen or to
its behavior without destroying the integrity of the interface.  Sometimes these changes are made
automatically by application programs so you may not need to deal with them. 

One direct method of making such changes is to use the setup key (or the like) at the terminal and then use
menus (or the like) to make the changes.  To do this you may need to be familiar with the terminal.  The other
3 methods send an escape sequence from the computer to the terminal to make the changes. These 3
examples show different methods of doing this to set reverse video: 

setterm −reverse1. 
tput −rev2. 
echo ^[[7m3. 

setterm

This is the easiest command to use.  It uses long options (but doesn't use the normal −− before them).  It
consults the terminfo database to determine what code to send.  You may change the color, brightness,
linewrap, keyboard repeat, cursor appearance, etc. 

tput

The "tput" command is similar to "setterm" but instead of using ordinary words as arguments, you must use
the abbreviations used by terminfo.  Many of the abbreviations are quite terse and hard to remember. 
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echo

In the example "echo ^[[7m" to set reverse video, the ^[ is the escape character.  To type it type ^V^[ (or ^V
followed by the escape key).  To use this "echo" method you must find out what code to use from a terminal
manual or from terminfo or termcap.  It's simpler to use setterm or tput if you are typing on the command line.
Since "echo ..." will execute faster (since it doesn't do any lookups) it's good for using in shell scripts which
run at start−up, etc. 

Saving changes

When you turn off the terminal the changes you made will be lost (unless you saved them in non−volatile
terminal memory by going into set−up mode and saving it).  If you want to use them again without having to
retype them, put the commands in a shell script or make it a shell function.  Then run it when you want to
make the changes.  One way to make the changes semi−permanent is to put the commands in a file that runs
each time you login or start up the computer. 

16.14 Multiple Sessions

The "screen " package runs multiple sessions something like virtual terminals on the console: See  The
Console: /dev/tty?.  You can switch back and forth between the sessions.  The non−free Facet Term software
also does this.  See  FacetTerm

16.15 Logging Out

To log out type either "logout" or "exit".  Under some circumstances your request will be refused, but you
should be told why. One reason for refusal is if you are not in the same shell that you logged into.  Another
way to log out is to press ^D.  Since ^D is also used for other purposes, you may not want it to log you out.  If
you set IGNOREEOF in the Bash shell then ^D will no longer log you out. 

16.16 Chatting between Terminals, Spying

If two persons logged into terminals on the same host computer want to chat with each other they may use the
"write" or the "talk" (better) program.  One may prevent anyone (except the superuser) from writing (sending
messages) to their terminal by using the "mesg" command. 

For spying on what someone else is doing at their terminal use the "ttysnoop" program.  In "ttysnoop" the two
terminals have the same status and anything typed on either keyboard appears on both screens (in the same
location).  So if you're really spying and don't want to be detected, you shouldn't type anything. 

"ttysnoop" can be used for training with instructor and trainee sitting side−by−side, each at their own
terminal.  The instructor may watch what the trainee is typing and can correct any mistakes by typing it
correctly.  The trainee can watch what the instructor types and then try typing it.  It's just like they used one
terminal with both people having their hands on the keyboard at the same time. 

There's one shortcoming to "ttysnoop" and that is that the terminals involved should all be (or emulate) the
same type of terminal (such as vt100).  Since the "Linux" emulation done by a console (monitor) and the
"minicom" emulation are close to vt100 one may use ttysnoop using two PCs, one running "minicom" which
emulates a terminal. 
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There's a non−free program called "DoubleVision" that is something like ttysnoop but does much more.
Terminals may be of different types and it can remember and playback sessions on terminals so you can
observe what happened in the past.  The webpage is at  http://www.tridia.com. 

16.17 Sharing the Serial Port

If you have another serial device (a printer, modem, etc.) that you want to connect to the same serial port that
a terminal is on, then there is more involved than just plugging in the other device. This is mainly because
when the getty program or shell is listening on the port, they (or the serial driver) are likely to give a response
to any bytes sent to the port.  Getty will respawn even if it's killed and will keep sending login prompts to the
serial port (which may now be connected to another device).  One way to work around this problem is to
switch runlevels so that no getty program or shell is running on the port.  But if your other use for the port
only uses the port for output to an external device, then you may live dangerously by using the port for the
other use with the shell or getty (intended for a terminal) simultaneously running on it. 

For the runlevel fix, you may create another runlevel in which no getty program runs on the port.  Then you
enter that new runlevel and use the serial port for something else.  To set this up you need to edit
/etc/inittab and check and/or set the runlevels at which getty runs.  For example the line:
"S1:23:respawn:/sbin/getty ..." means that getty will run (on ttyS1) in runlevels 2 and 3.  Now you
could have it only run in level 2 (by deleting "3") and then go to runlevel 3 when you want to use the other
serial device.  Thus to use the serial port for something else, the super−user would type "init 3" to switch to
runlevel 3.  Type "init 2" to get back to runlevel 2. Note that each runlevel may have a different set of
initialization scripts but you can change this if you want, so that the same scripts are run in both runlevels.
How the scripts and runlevels work are different for each Linux distribution.  In Debian, the explanation of
this is in /usr/doc/sysvinit but also look in /usr/share/doc.

There's also the problem of the stty configuration of the port.  When the port is being used for the terminal it
has certain configurations but when say "init 3" is used to switch runlevels and disable getty on the port, the
original (boot−time) configuration of the port is not restored.  You are likely to wind up with the port
configured in a "raw" mode.  This means that the serial port likely needs to be fully reconfigured by stty,
either by a script you write or by the next application which runs on the port.  Some applications such as
printing from the serial port are not capable of fully reconfiguring (the /etc/printcap can only partially
reconfigure).  Thus you may need to write a script to do it.  The stty configuration of a terminal will be
different depending on whether a shell is running on it, whether it's at the "login" prompt, etc.  Thus the stty
configuration after switching runlevels may vary. 

16.18 Browsers for Terminals

The "lynx" browser works fine with terminals.  There are two other text browsers: "w3m" and "links" that
only work correctly with the Linux console or vt100 terminals. 

"w3m" and "links" overcomes some of the "lynx" deficiencies.  They can display tables better and can display
frames side−by−side (but they may appear cramped).  Unfortunately, they don't have numbered links like lynx
does nor do they have good support for cookies.  None of these 3 text browsers support Java script. 

 Text−Terminal−HOWTO 

16.17 Sharing the Serial Port 84

http://www.tridia.com


17. Special Uses for a Terminal

17.1 Make a Serial Terminal the Console 

This will turn a text−terminal (or emulator PC) into a "serial console".  Many messages from the system are
normally only sent to the console (the PC monitor).  Some of the messages sent to the console at boot−time
may also be seen on any terminal after the boot succeeds by typing the command: dmesg.  If the boot failed
this will not be of any use since the terminal can't work without an operating system.  It's possible to modify
the Linux kernel so as to make a terminal serve as the console and receive all the messages from Linux
intended for the console.  Unfortunately, the messages from the BIOS (which display on the monitor when a
PC is first started) will not display on this terminal (but still display on the monitor). 

There's a Remote−Serial−Console−HOWTO on this topic.  Some people use a serial console when they run a
PC without a monitor or keyboard. Normally, a PC will not start up without a keyboard and video card but
some BIOSs permit it.  If you are lucky enough to have such a BIOS that supports "console re−direct" you
will likely then need to setup the BIOS using the CMOS menus when you start your PC. 

The method of creating a "serial console" depends on your kernel version.  In any case serial support needs to
be compiled into the kernel and not supplied as a module. 

For Kernels 2.2 or higher

The instructions for creating a serial−console are included with the kernel documentation in:
Documentation/serial−console.txt. Kernel 2.4+ has better documentation and mentions the need to run getty
on the serial port.  Normally, the device /dev/console is linked to tty0 (the PC console).  For a serial−console
you create a new /dev/console by 

mknod −m 622 console c 5 1

You must also put statements regarding the serial−console into /etc/lilo.conf and then run lilo.  This is because
the equivalent of "setserial" needs to be run early before the kernel is loaded so that the serial−console can
display the booting.  See the above mentioned kernel documentation and the man page for lilo.conf for more
details. 

Here is an example /etc/lilo.conf file contents (for ttyS0): 

prompt
timeout=50
boot = /dev/sda
vga = normal # force sane state
install = /boot/boot.b
message = /boot/message
image = /vmlinuz
root = /dev/sda1
label = console
serial = 0,9600n8
append = "console=ttyS0"

The same PC may have more than one serial console but the last console mentioned in the "append"
statement becomes the main console that you interact with ??  See the kernel docs (but it's not too clear). 
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For Kernels before 2.2

The Linux Journal in April 1997 had an article on patching the Linux kernel.  You add a couple of #defines at
the start of src/linux/drivers/char/console.c: 

#define CONFIG_SERIAL_ECHO
#define SERIAL_ECHO_PORT 0x2f8  /* Serial port address  */

The following was not in the Linux Journal article.
In kernel 2.+ (and earlier ??) you need to also set the baud
rate (unless 9600 is OK).  Find these 2 lines:

serial_echo_outb(0x00, UART_DLM); /* 9600 baud */
serial_echo_outb(0x0c, UART_DLL);

Change 0x0c in the line above (depending on the baud rate you want):

115200 baud: 0x01       19200 baud: 0x06        2400 baud: 0x30
 57600 baud: 0x02        9600 baud: 0x0c        1200 baud: 0x60
 38400 baud: 0x03        4800 baud: 0x18

If you currently use the console to select which operating system to boot (using LILO), but would like to do
this from a terminal, then you need to add a line to the /etc/lilo.conf file.  See the manual page for lilo.conf
and search for "serial=". 

17.2 Run Linux without a Monitor

One way to do this is to just use a terminal (serial console) for the monitor See  Make a Serial Terminal the
Console.  You will likely still need a video card since most BIOSs require one to get the PC started.  Your
BIOS may also require a keyboard to get started or it may have an option where you can set the BIOS not to
require a keyboard. 

If you have a keyboardless terminal, it can also be used as a monitor by use of the ttysnoop program.  As of
yet, it doesn't work like a console since it doesn't get all the initial boot−time messages.  See Use a
Keyboardless Terminal as the Monitor

17.3 Use a Keyboardless Terminal as the Monitor 

How it works

While you might think that a terminal without a keyboard is useless it is possible to use it as the monitor and
type on the PC's own keyboard.  This may be done by using the spy program ttysnoop.  This program
permits a person at one terminal to spy on (or snoop) what someone else is typing at another terminal (or the
PC console−monitor). 

Now suppose you are typing away at the monitor tty1.  Imagine that someone with a terminal on ttyS2 is
spying on you (with ttysnoop) and has a screen that looks just like your screen.  Everything you type at tty1
also displays on ttyS2.  Now move the spy terminal (on ttyS2) so it is side−by−side with your monitor (on
tty1).  Everything you type on the PC keyboard will now display on the two screens in front of you: the
monitor and the spy terminal.  Now just look only at the spy terminal as you type.  Disconnect both the
monitor and the terminal keyboard since you're not using either.  Thus you are now using a keyboardless
terminal as a monitor.  What a simple but clever solution! 
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One possible problem (which turns out to be no problem at all) is that normally, the type of spy terminal
should be the same as the type of terminal being spied upon.  Since the monitor is normally declared as a
terminal of type "linux" (which is close to vt100), you might think that the real terminal should also be (or at
least emulate) a vt100.  Not necessarily so!  For example, if you have a wyse60 terminal you simply falsely
declare that you have a wyse terminal on tty1 (tell the getty program for tty1 that it's a wyse60). 

Here's why you can get away with this.  Go back the the scenario where you have both the monitor and the
wyse60 terminal in front of you, both displaying the same thing (or trying to).  Ttysnoop will be sending the
wyse60 the same bytes as are going to the monitor.  If you've falsely claimed that the monitor is a wyse60,
then you'll have wyse60  escape sequences going to both the monitor and the wyse60 terminal (via ttysnoops).
The display on the wyse60 is fine but the display on the monitor is corrupted since it's getting wyse60 escape
sequences.  Since you will not use the monitor (and are about to disconnect it) this corruption is never a
problem (you simply don't see it). 

Example configuration

This is not the ideal setup since ttysnoop runs so late that the login prompt doesn't appear.  This example is for
a wyse60 terminal on ttyS2 and the missing monitor/PC−keyboard on tty1.  It uses the agetty program for
getty as supplied by the Debian distribution.  Your getty may require a different format. 

In /etc/inittab:

1:2345:respawn:/sbin/getty 38400 tty1 wyse60 −ln /usr/sbin/ttysnoops

Note that ttysnoop/ttysnoops is a client−server combo so the "s" is not a typo.  If you don't use −n you
may not see a login prompt on the terminal.  With no −n, agetty issues the prompt before the ttysnoop is
activated.  With −n, agetty doesn't issue the prompt (but login does instead).  If you use −n, agetty will no
longer automatically detect parity but if you don't use parity all is OK. 

In /etc/snooptab:

# tty       snoopdev      type    execpgm
tty1        /dev/ttyS3    init    /usr/local/bin/sterm

In the above, a script named sterm is used to run the stty program. You may not need this or may want to use
it for another purpose. Here's the example sterm script in /usr/local/bin/sterm:

#!/bin/sh
stty rows 24
/bin/login $@

18. Trouble−Shooting 

If you suspect that the problem is a hardware problem, see the  Repair and Diagnose section.  If it's the
keyboard see  Keyboards.  If it responds incorrectly (if at all) to what you type. see  Corrupted Terminal
Interface.  If the problem involves the serial port itself see the Serial−HOWTO. 

Here is a list of possible problems: 

Is the Terminal OK ? Suspect the terminal is defective.• 
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Display Freezes (hung  terminal)• 
Displays Foreign/Weird  Characters/Symbols• 
Displays Escape Sequences• 
Missing Text Either skips over some text or displays some text OK and hangs.• 
All Keys Work Erratically; Must Hit  a Key a Few Times• 
If getty run from command line: Programs  get stopped with message "Stopped"• 
Getty Respawning Too Rapidly (console error message)• 
Fails Just After Login• 
Can't Login but login prompt is OK.• 
Garbled Login Prompt• 
No Login Prompt• 

There are two cases where the terminal goes bad.  One is when it's been recently working OK and suddenly
goes bad.  This is discussed in the next sub−section.  The other case is where things don't work right just after
you install a terminal.  For this case you may skip over the next section. 

18.1 Terminal Was Working OK 

When a formerly working terminal suddenly goes bad it is often easy to find the problem.  That's because
(except for hardware failures) the problem is likely due to something that you did (or something the software
that you used did). 

The problem may be obvious such as an error message when the terminal is first turned on.  If it makes a
strange noise it likely needs repair.  See  Repair & Diagnose.  First, think about what has been done or changed
recently as it's likely the cause of the problem.  Did the problem happen just after new system software was
installed or after a change in the configuration? 

If the terminal isn't responding correctly (if at all) to what you type to it, you may have a  Corrupted Terminal
Interface. 

18.2 Terminal Newly Installed 

If you've just connected up a terminal to a computer per instructions and it doesn't work this section is for
you.  If a terminal that formerly worked OK doesn't work now then see  Terminal Was Working OK If you
suspect that the serial port on your computer may be defective you might try running a diagnostic test
program on it.  At present (June 1998) it seems that Linux doesn't yet have such a diagnostic program so you
may need to run diagnostics under MS DOS/Windows.  There are some programs to monitor the various serial
lines such at DTR, CTS, etc. and this may help.  See  Serial Monitoring/Diagnostics

One approach is to first see if the the terminal will work by trying to copy a file to the terminal (cp my_file
/dev/ttyS?) under the most simple situation.  This means with the modem control lines disabled and at a show
speed that doesn't need flow control (make sure that any hardware flow control is disabled).  If this copy
works, then make the situation a little more complicated and see if it still works, etc., etc.  When the trouble
appears just after you made a change, then that change is likely the source of the trouble.  Actually, its more
efficient (but more complex) to jump from the simple situation to about half way to the final configuration so
that the test eliminates about half of the remaining possible causes of the problem.  Then repeat this
methodology for the next test.  This way it would only take about 10 tests to find the cause out of a thousand
possible causes.  You should deviate a little from this method based on hunches and clues. 
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18.3 Is the Terminal OK ? 

Many terminals will start up with some words on the screen.  If these words convey no error message, it's
probably OK.  If there is no sign of power (a dark screen, etc.) re−plug in the computer power cord at both
ends.  Make sure there is power at the wall jack (or at the extension cord end).  Try another power cord if you
have one.  Make sure the terminal is turned on and that its fuse is not blown.  A blank (or dim) screen may
sometimes be fixed by just turning up the brightness and contrast using knobs or a keyboard key in set−up
mode. 

A terminal that's been stored for a long time may take a while to "warm up" as the electrolytic capacitors heal
themselves under voltage.  If it still won't work See  Repair & Diagnose for tips on repairing it. 

If the terminal starts up OK, but you suspect that something may be wrong with it, go into "local mode"
where is works like a typewriter and try typing on it.  See  Local Mode. Before you have trouble, you should
find out if your terminal displays error messages if the hardware is bad.  One way to test a terminal for this is
to turn it on with the keyboard unplugged and see if it displays an error message. 

18.4 Missing Text 

If several lines or text displays on the terminal OK and then it stops without finishing (in the middle of a
word, etc.) or if big chunks of text are missing, you likely have a problem with flow control.  If you can't
figure out right away what's causing it, decrease the speed.  If that fixes it, it's likely a flow control problem.  It
may be that flow control is not working at all due to failure to configure it correctly, or due to incorrect cable
wiring (for hardware flow control).  See  Flow Control

If you can type OK at the terminal but when text is sent to the terminal only about 1 in every 16 characters
sent gets thru, then you may have given the wrong UART to setserial.  This will happen if the port is an
obsolete 16550 (or lower) but you've told setserial it's a 16550A or higher. 

If single characters are missing, perhaps the serial port is being overrun by too fast a speed.  Try a slower baud
rate. 

If your device is under 1200 baud (probably a very slow old hard−copy terminal or printer) and the text gets
truncated, then the problem may be in the serial device driver.  See Printing−HOWTO under "Serial devices"
on how to fix this. 

18.5 All Keys Work Erratically; Must Hit a Key a Few Times

This is where you need to hit a key a few times before it works (and see the letter you typed on the screen).  If
you type a word, some (or even all) of the letters may be missing on the screen.  If letters are missing from a
command it doesn't work and even if all letters are present you may need to hit the return−key several times
to get the command to execute. 

This may be due to two different processes opening the serial port.  Both try to read what you type.
Sometimes one process (the right one −−perhaps the shell) reads what you type and at other times the other
process reads what you type.  An example is where the other process is for a serial mouse (such as gpm)
which doesn't echo what you type. So another process running on the same ttySx is eating some of what you
type.  To fix this, use "ps −alx" to see what else is running on your ttySx and kill that process. 
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You might think that lockfiles would prevent this.  But neither the terminal nor the gpm mouse program uses
lockfiles.  Since others may need to write to your terminal, it's reasonable not to use lockfiles. See Lock−Files
in the Serial−HOWTO. 

18.6 ... respawning too fast: disabled for 5 minutes

What's happening

You see a message on the console like: "Getty respawning too fast: disabled for 5 minutes".  Instead of
"Getty" it may display a label (such as: Id "S2") where S2 is the label for the line in /etc/inittab from where
from where getty was called. 

When getty starts up, it tries to send a login message to the serial port.  But if there is something seriously
wrong, getty will be immediately killed.  Since the /etc/inittab file line for getty says to "respawn", getty is
started again, only to be killed again, etc. Thus getty respawns over and over.  But the operating system
intervenes and stops this nonsense (for 5 minutes).  The following sections show possible causes and fixes. 

Getty line in /etc/inittab file incorrect

Make sure the the line which calls getty in /etc/inittab is correct.  A typo in ttySx (or DTxxxx for uugetty)
may cause this problem. 

No modem control signal

If the terminal doesn't send the PC a CD signal on one of the pins of the serial port, getty will be killed unless
the "local" option has been used with getty.  So a quick fix is to just use a "local" option (−L for agetty,
"CLOCAL" in /etc/gettydefs for ps_getty). 

Another approach is to determine why CD is not being asserted.  In many cases the cable to the terminal
simply doesn't have a wire for the CD pin so you must use the "local" option.  If there is a wire for the CD pin
then there may not be any signal on it until the terminal is powered on.  Note that the CD pin signal is
sometimes supplied by the DTR pin of the terminal (or the PC) by using jumper wires inside the connector. 

No such serial device

If the device (such as /dev/ttyS2) is bogus (doesn't physically exist or has been disabled), then getty will be
killed.  You may use "scanport" and/or "setserial" to probe for the device or try another ttyS.  Perhaps the
device has been disabled in the CMOS.  See "Serial−HOWTO". 

No serial support

Linux provides serial support either by selecting it when compiling the kernel or by loading the serial
module: serial.o.  This "respawning" error happens if serial support has neither been built into the kernel nor
provided by a serial module.  You many use the "lsmod" command to see if the serial module is loaded.  To
see if serial support is built into the kernel, check a kernel configuration file (in /boot, in the source tree, etc.) 
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Key shorted 

Another possible cause of getty respawning too rapidly is if a keyboard key is shorted.  This gives the same
result as if the key was continuously held down.  With auto−repeat enabled, this "types" thousands of
characters to the login prompt.  Look for a screen filled with all the same character (in some cases, with 2 or
more different characters). 

18.7 Fails Just After Login 

If you can login OK but then you can't use the terminal it may be because the starting of the login shell has
reconfigured the terminal (to an incorrect setting) by a command which someone put into one of the files that
are run when you login and a shell starts.  These files include /etc/profile and  /.bashrc.  Look for a command
starting with "stty" or "setserial" and make sure that it's correct.  Even if it's done OK in one initialization file,
it may be reset incorrectly in another initialization file that you are not aware of.  Ways to get into the systems
to fix it are to use another terminal or console, use a rescue diskette, or type: "linux single" at the lilo prompt
which puts you into single user mode without running startup files. 

18.8 Can't Login 

If you get a login prompt but get no response (or perhaps a garbled response) to your login attempts a
possible cause is that the communication is bad one−way from the terminal to the computer.  It could be a bad
or mis−wired cable/connector.  If you're not already using the "local" option with getty, do so to disable the
modem control lines.  See  Getty (used in /etc/inittab).  You might also disable hardware flow control (stty
−crtscts) if it was enabled.  If it now works OK then your modem control lines are likely either not wired
correctly or there's a mistake in your set−up.  Some terminals allow setting different values (such as baud rate)
for send and receive so the receive could be OK but the send bad. 

You should also (at the console) try "stty < /dev/ttyS1" (if you use ttyS1) to see that it's set up correctly.  It
will often be in raw mode (and this is probably OK) with −icanon and −echo etc.  If the terminal incorrectly
set at half−duplex (HDX), then one set of the characters you see when you type are coming from the terminal
itself. If the characters are doubled, then the echos from the computer are OK and you may switch to
full−duplex to fix this.  But if half−duplex is set and you only see what looks like normal "echos", then they
are not coming from the computer as they should be. 

If you get a message saying something like "login failed" then if there is no error in typing or in the
password, there may be some restrictions on logins which will not allow you to log in. Unfortunately, this
message, may not tell you why it failed.  See  Login Restrictions

18.9 Garbled Login Prompt 

This may be due to using the wrong character set, transmission errors due to too high of a baud rate,
incompatible baud rates, incompatible parity, or the wrong number of bits per byte.  If it's a variety of strange
characters you have the wrong character set or a high order bit is being set by mistake.  If words are
misspelled, try a lower baud rate.  For baud, parity, or bits/character incompatibilities you see a lot of the
same "error character" which represents a real character that can't be displayed correctly due to an error in
parity or baud rate. 

If you are using agetty (often just named getty), the agetty program will detect and set parity and/or
bits/character if you type something. Try it with a return to see if it fixes it. 
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18.10 No Login Prompt 

If there's no login prompt displayed after hitting the return−key a few times then check the following:  Use the
"top" or "ps" programs to make sure that a getty (or login) process is actually running on the terminal.  Is the
terminal getting power?  Is the null modem cable plugged in to the correct ports on both the terminal and
computer? 

Check that getty isn't hanging because there is no CD signal (or no CD wire in the cable).  If such a CD signal
doesn't exist you should have specified "local" to getty by either: 

If getty_ps (Redhat, etc.) two CLOCAL flags in /etc/gettydefs (See  getty (part of getty_ps)).• 
If agetty (Debian, etc.) a −L flag in /etc/inittab (See  agetty).• 

If getty (or login) isn't running, carefully check the format for calling getty in /etc/inittab.  Make sure that it
includes the current runlevel (shown by typing the command "runlevel") and that it is valid for your flavor of
getty.  Sometimes killing getty or login (it will restart automatically) helps. 

Terminal was working OK

Although hardware failures are possible, the problem is likely due to something that someone did by mistake.
Did someone do something that might have loosened a cable?  Did someone modify /etc/inittab or make some
other change to the software so as to prevent terminal login?  If this doesn't reveal the cause, continue reading. 

More diagnose

The above should solve most cases (unless you've just installed a terminal).  Other causes include defective
hardware or cables (must be null−modem), terminal setup at wrong baud−rate, terminal in local mode, etc.  At
this point two different avenues of approach are (you may pursue more than one at a time). 

Diagnose problem from the console• 
Measure voltages• 

Diagnose problem from the console 

One test is to try to copy a something to the terminal (It might be a good idea to try this near the start of the
installation process before setting up getty).  You may use the Linux copy command such as:"cp file_name
/dev/ttyS1".  Or your could use: "echo any_word > /dev/ttySx".  If it doesn't work, use stty to make the
interface as simple as possible with everything disabled (such as hardware flow control: −crtscts; parity, and
modem control signals: clocal).  Be sure the baud rates and the bits/byte are the same.  If nothing happens
verify that the port is alive with a voltmeter per the next section. 

Measure voltages 

If you have a voltmeter handy check for a negative voltage (−4v to −15v) at pin 3 (receive data) at the
terminal side of the null−modem cable.  The positive lead of the meter should be connected to a good ground
(the metal connectors on the ends of cables are often not grounded).  If there is no such negative voltage then
check for it at the transmit pin (TxD) on the computer (see  DB9−DB25 for the pin−out).  If it's present there
but not at the receive pin (RxD) at the terminal, then the cable is bad (loose connection, broken wire, or not a
null−modem).  If voltage is absent at the computer, then its serial port is dead.  Test it with a software
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diagnostic test or replace it. 

If the serial port is alive, you may want to send a file to it (with modem controls disabled) and watch the
signal on a voltmeter (or other electronic gadget).  To check for a transmitted signal with a voltmeter, check
for a steady negative voltage when the line is idle.  Then start sending a file (or start getty).  On an analog
meter you should see the needle dropping to almost 0 and fluttering about 0 as it measures short−run averages
of the bit stream.  On a digital meter you will not see the fluctuations as well but you can switch to the AC
scale to see the AC voltage created by the flow of bits.  If your meter fails to block out DC on the AC scale
(the default of most analog meters), then you could get a false high AC reading when looking at the idle DC
of −12 V on the AC scale.  Without a meter, you could connect a known good device (such as another
terminal or an external  modem) to the serial port and see if it works OK. 

18.11 Displays Foreign/Weird Characters/Symbols

Don't confuse this with  Displays Escape Sequences.  If what you type or see on the screen is not what's
expected but looks like a foreign alphabet, math symbols, line−drawing character, etc. then it could be that
the many of bytes that are sent to your terminal have the high order bit set (when it shouldn't be).  You are
looking at the character set (or part of a character set) which has the high order bit set.  This may happen if
you have the baud rate wrong or parity set wrong (per stty).  If you have parity set per stty but inside the
terminal it's 8−bit no−parity, then the high order bit (= parity bit) will often be erroneously set. Try stty −F
/dev/ttyS?  from another terminal to check if the baud rate and parity are correct. 

Perhaps the wrong character set (font) has been installed.  An erroneous escape sequence sent to the terminal
could have switched character sets.  If you are using the mapchan program to change the keyboard mapping, it
could be incorrect. 

18.12 Displays Escape Sequences 

You may see something like "5;35H22,1" or "3;4v" or "1;24r" or "^[[21;6H", etc., etc.  Of course, the
numbers and letters will be different.  They will be scattered about (either randomly or in a strange sense of
order).  The display will look a mess and will likely have other defects.  Some application and commands will
result in corrupted displays. 

What you see are escape sequences (or fragments of them) that were sent to your terminal in order to control
it, but your terminal didn't recognize them and passed them on to the screen.  It's likely that the program
you're using erroneously thinks you are using another type of terminal.  Thus it sends escape sequences that
your terminal doesn't understand.  This can sometimes do strange things to your display. Check that the
TERM environment variable is set correctly (type: echo $TERM). 

Telnet

The problem of getting TERM right can be a bit more complex if you use telnet.  Telnet doesn't emulate a
terminal but passes the value of your TERM variable to the remote computer.  If the remote computer doesn't
support your type of terminal, or changes the value of TERM to a wrong value (on the remote) then there's
trouble.  Telnet should initially set the value of TERM correctly on the remote.  But changes to the value of
TERM (on the remote) could be caused by an incorrect shell configuration file there.  The first thing to do is
to check the value of TERM, both on your computer and on the remote.  The above is overly simplified since
it's possible for your telnet client to present the remote server with a list of possible TERM values which your
computer supports (if telnet knows that your computer can emulate more than one terminal type). 
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Terminal set to display escape sequences

Another possible cause is that your terminal happens to be in a special mode where it displays the escape
sequences instead of executing them.  Then you'll also see them on the screen but they will display in an
orderly fashion.  This mode is more precisely, one that displays control codes.  But since each escape sequence
starts with a control code (the "escape" character), the whole escape sequence is not recognized by the
terminal and is passed along to the screen.  See Control Codes. 

18.13 Slow: pauses of several seconds between bursts of
characters

You likely have mis−set interrupts>  See the Serial−HOWTO section starting with "Slow:" 

18.14 Terminal doesn't scroll 

One reason may be that something is wrong with terminfo.  Another reason could be that you are outside the
scrolling region set for the terminal.  Some stupid programs just assume that your terminal has 24 lines and set
the scrolling region for 24 lines (by an escape sequence sent to the terminal) without consulting terminfo to
see how many lines there actually are.  Then when you use another program it may leave the cursor on line 25
where it becomes trapped and the terminal will not scroll.  To avoid this problem, create an environment
variable "export LINES=25" and also "stty −F /dev/ttySx rows 25". Then the programs that assume 24 lines
will hopefully use 25 lines set the scrolling region accordingly. 

18.15 Serial Monitoring/Diagnostics 

A few Linux programs will monitor the modem control lines and indicate if they are positive (1) or negative
(0). 

statserial (in Debian distribution)• 
serialmon (doesn't monitor RTS, CTS, DSR but logs other functions)• 
modemstat (only works on Linux PC consoles.  Will coexist with the command line)• 

You may already have them.  If not, go to  Serial Software.  When using these, bear in mind that what you see
is the state of the lines at the host computer.  The situation at the terminal will be different since some wires
are often missing from cables while other wires cross over.  As of June 1998, I know of no diagnostic program
in Linux for the serial port. 

18.16 Local Mode 

In local mode, the terminal disconnects from the computer and behaves like a typewriter (only it doesn't type
on paper but on the screen).  Going back into on−line mode reconnects to the computer allowing you to
resume activities at the same point where you left off when you went into "local".  This is useful both for
testing the terminal and for educational purposes.  For some terminals  there is no "local mode" but "block
mode" may substitute for it.  If there is no "block mode", "half duplex" mode might work, except that what
you type gets sent to the computer also.  In this case the computer may echo the characters sent to it resulting
in two characters displayed on the screen for every character you type.  To prevent this you could shut down
the computer, disconnect the RS−232 cable, etc. 
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When in local mode you may type escape sequences (starting with the ESC key) and observe what they do.  If
the terminal doesn't work correctly in local mode, it's unlikely that it will work correctly when connected to
the computer.  If you're not exactly sure what an escape sequence does, you can try it out in local mode.  You
might also use it for trying out a terminal that is for sale.  To get into local mode on some terminals you first
enter set−up mode and then select "local" from a menu (or press a certain key).  See  Getting Into Set−Up
(Configuration) Mode. 

18.17 Serial Electrical Test Equipment 

Breakout Gadgets, etc.

While a multimeter (used as a voltmeter) may be all that you need for just a few serial ports, simple special
test equipment has been made for testing serial port lines.  Some are called "breakout ... " where breakout
means to break out conductors from a cable.  These gadgets have a couple of connectors which connect to
serial port connectors (either at the ends of serial cables or at the back of a PC).  Some have test points for
connecting a voltmeter.  Others have LED lamps which light when certain modem control lines are asserted
(turned on).  The color of the light may indicate the polarity of the signal (positive or negative voltage).  Still
others have jumpers so that you can connect any wire to any wire.  Some have switches. 

Radio Shack sells (in 2001) a "RS−232 Troubleshooter" (formerly called "RS−232 Line Tester") Cat.
#276−1401.  It checks TD, RD, CD, RTS, CTS, DTR, and DSR.  A green light means on (+12 v) while red
means off (−12 v).  They also sell a "RS−232 Serial Jumper Box" Cat. #276−1403.  This permits connecting
the pins anyway you choose.  Both these items are under the heading of "Peripheral hookup helpers".
Unfortunately, they are not listed in the index to the printed catalog.  They are on the same page as the D type
connecters so look in the index under "Wire & Cable, Connectors.  Or look under "Tools, D−Sub Connection
Pin ...".  A store chain named "Active Component 

Measuring voltages

Any voltmeter or multimeter, even the cheapest that sells for about $10, should work fine.  Trying to use other
methods for checking voltage is tricky.  Don't use a LED unless it has a series resistor to reduce the voltage
across the LED.  A 470 ohm resistor is used for a 20 ma LED (but not all LED's are 20 ma).  The LED will
only light for a certain polarity so you may test for + or − voltages.  Does anyone make such a gadget for
automotive circuit testing??  Logic probes may be damaged if you try to use them since the TTL voltages for
which they are designed are only 5 volts.  Trying to use a 12 V incandescent light bulb is not a good idea.  It
won't show polarity and due to limited output current of the UART it probably will not even light up. 

To measure voltage on a female connector you may plug in a bent paper clip into the desired opening.  The
paper clip's diameter should be no larger than the pins so that it doesn't damage the contact.  Clip an alligator
clip (or the like) to the paper clip to connect up.  Take care not to touch two pins at the same time with any
metal object. 

Taste voltage

As a last resort, if you have no test equipment and are willing to risk getting shocked (or even electrocuted)
you can always taste the voltage.  Before touching one of the test leads with your tongue, test them to make
sure that there is no high voltage on them.  Touch both leads (at the same time) to one hand to see if they
shock you.  Then if no shock, wet the skin contact points by licking and repeat.  If this test gives you a shock,
you certainly don't want to use your tongue. 
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For the test for 12 V, Lick a finger and hold one test lead in it. Put the other test lead on your tongue.  If the
lead on your tongue is positive, there will be a noticeable taste.  You might try this with flashlight batteries
first so you will know what taste to expect. 

19. Repair & Diagnose 

Repairing a terminal has much in common with repairing a monitor and/or keyboard.  Sometimes the built−in
diagnostics of the terminal will display on the screen.  By the symptoms, one may often isolate the trouble to
one of the following: bad keyboard, CRT dead, power electronics failure (distorted display), or digital
electronics failure.  It's best to have a service manual, but even if you don't have one, you can often still repair
it. 

19.1 Repair Books & Websites 

Books

Bigelow, Stephen J.: Troubleshooting & Repairing Computer Monitors, 2nd edition, McGraw−Hill, 1997.
Doesn't cover the character generation electronics nor the keyboard. 

Websites

The FAQ  http://www.repairfaq.org for the newsgroup: sci.electronics.repair is long and comprehensive,
although it doesn't cover terminals per se.  See the section "Computer and Video Monitors".  Much of this
information is applicable to terminals as are the sections: "Testing Capacitors", "Testing Flyback
Transformers", etc.  Perhaps in the future, the "info" on repair in this HOWTO will consist mainly of links to
the above FAQ (or the like). Shuford's repair archive of newsgroup postings on terminal repair is another
source of info. 

19.2 Safety

CRT's use high voltage of up to 30,000 volts for color (less for monochrome).  Be careful not to touch this
voltage if the set is on and the cover off.  It probably won't kill you even if you do since the amount of current
it can supply is limited.  But it is likely to badly burn and shock you, etc.  High voltage can jump across air
gaps and go thru cracked insulation so keep your hands a safe distance from it.  You should notice the
well−insulated high voltage cable connected to one side of the picture tube.  Even when the set is off, there is
still enough residual voltage on the picture tube cable connection to give you quite a shock.  To discharge this
voltage when the set is unplugged use a screwdriver (insulated handle) with the metal blade grounded to the
picture tube ground cable with a jumper wire.  Don't use chassis ground. 

The lower voltages (of hundreds of volts) can be even more dangerous since they are not current limited.  It is
even more dangerous if your hands are wet or if you are wearing a metal watchband, ring or the like.  In rare
cases people have been killed by it so be careful.  The lowest voltages of only several volts on digital circuitry
are fairly safe but don't touch anything (except with a well insulated tool) unless you know for sure. 
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19.3 Appearance of Display

If the display is too dim, turn up the brightness and/or contrast. using knobs on the exterior of the unit (if they
exist).  If the width, height or centering is incorrect, there are often control knobs for these.  For some older
terminals one must press an arrow key (or the like) in set−up mode. 

You may need to remove the cover to make adjustments, especially on older models.  You could arrange
things so that a large mirror is in front of the terminal so as to view the display in the mirror while making
adjustments.  The adjustments to turn may be on a printed circuit board.  While a screwdriver (possibly
Phillips−head) may be all that's needed, inductors may require special TV alignment tools (plastic hex
wrenches, etc.).  The abbreviated name of the adjustment should be printed on the circuit board.  For example,
here are some such names: 

V−Size adjusts the Vertical height (Size)• 
H−Size adjusts the Horizontal width (Size).  It may be an inductor.• 
V−Pos adjusts the Vertical Position• 
H−Pos adjusts the Horizontal Position• 
V−Lin adjusts Vertical Linearity (Use if width of scan lines differs at the top and bottom of the
screen)

• 

V−Hold adjusts Vertical Hold (Use if screen is uncontrollable scrolling)• 
Bright adjusts brightness (an external knob may also exist)• 
Sub−Bright adjusts brightness of subdued intensity mode (often the normal mode: dimmer than bold
or bright mode).

• 

Changing linearity may change the size so that it will need to be readjusted.  A terminal that has been stored
for some time may have a small display rectangle on the screen surrounded by a large black Before adjusting
it, leave the terminal on for a while since it will likely recover some with use (the black borders will shrink). 

19.4 Diagnose

Terminal Made a Noise or Smoked

If the terminal made some noise just before it failed (or when you turn it on after it failed) that noise is a clue
to what is wrong.  If you hear a noise or see/smell smoke, immediately turn the terminal off to prevent further
damage.  A pop noise may be a capacitor exploding or a fuse blowing.  A buzzing noise is likely due to arcing.
The problem may be in the high voltage power supply of several thousand volts. 

Remove the cover.  Look for discoloration and bulging/cracked capacitors.  If the bad spot is not evident, turn
it on again for a short time and look for smoking/arcing.  For arcing, a dimly lit room will help find it.  The
high voltage cable (runs between the flyback transformer and the side of the picture tube) may have broken
insulation that arcs to ground.  Fix it with high−voltage insulating dope, or special electrical tape designed say
for 10,000 volts. 

The flyback transformer (high voltage) may make only a faint clicking or sparking noise if it fails.  You may
not hear it until you turn the terminal off for a while and then turn it back on again.  To track down the noise
you may use a piece of small rubber tubing (such as used in automobiles) as a stethoscope  to listen to it.  But
while you are listening for the noise, the terminal is suffering more damage so try find it fast (but not so fast
as to risk getting shocked). 
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A shorted power supply may cause a fuse to blow.  Replacing a blown fuse may not solve the problem as the
same short may blow the fuse again.  Inspect for any darkened spots due to high heat and test those
components.  Shorted power transistors may cause the fuse to blow. They may be tested with a transistor
checker or even with an ohm−meter.  Use the low ohm scale on an ohm−meter so that the voltage applied by
the meter is low.  This will reduce the possible damage to good components caused by this test voltage. 

If the terminal has been exposed to dampness such as being stored in a damp place or near a kitchen with
steam from cooking, a fix may be to dry out the unit.  Heating a "failed" flyback transformer with a blow
dryer for several minutes may restore it. 

Terminal Made No Noise

A blank screen may be due to someone turning the brightness control to the lowest level or to aging.  The next
thing to do is to check the cables for loose or broken connections.  If there is no sign of power, substitute a
new power cord after making sure that the power outlet on the wall is "hot". 

If the keyboard is suspected, try it on another terminal of the same type or substitute a good keyboard.  Wiggle
the keyboard cable ends and the plug.  Wires inside cables may break, especially near their ends.  If the break
is verified by wiggling it (having the problem go on and off in synchronization with the wiggles), then one
may either get a new cable or cut into the cable and re−solder the breaks, etc. 

One of the first things to do if the keyboard works is to put the terminal into  Local Mode.  If it works OK in
local, then the problem is likely in the connection to the host computer (or incorrect interface) or in the
UART chips of the terminal. 

19.5 Detective work

By carefully inspecting the circuitry, one may often find the cause of the problem.  Look for discoloration,
cracks, etc.  An intermittent problem may sometimes be found by tapping on components with a ball−point
pen (not the metal tip of course).  A break in the conductor of a printed circuit board may sometimes be
revealed by flexing the board.  Solder that looks like it formed a drop or a solder joint with little solder may
need re−soldering.  Soldering may heat up transistors (and other components) and damage them so use a heat
sink if feasible.  One failure may cause others, so unless you find the original cause, the failure may reoccur. 

If you have a common brand of terminal, you may be able to search the Internet (including newsgroup
postings) to find out what the most frequent types of problems are for your terminal and perhaps information
on how to fix it.  If you find that a certain component is bad you may search for this component (for example
R214 wyse) and hopefully find a report by someone else who had the same problem. Such a report may
indicate other components that failed at the same time.  If a component is damaged so badly that its value can't
be read, then you might find it on the Internet.  The manufacturer may have on−line data that search engines
don't index. 

To see if the digital electronics work, try (using a good keyboard) typing at the bad terminal.  Try to read this
typing at a good terminal (or the console) using the copy command or with a terminal communication
program such as minicom.  You may need to hit the return key at the terminal in order to send a line.  One may
ask the bad terminal for its identity etc. from another terminal. This will show if two−way communication
works. 
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19.6 Error Messages on the Screen

You are in luck if you see an error message on the screen.  This usually happens when you first turn the
terminal on. 

Keyboard Error

This usually means that the keyboard is not plugged in, or that the connection is loose.  For more serious
problems see  Keyboards

Checksum Error in NVR

NVR is "Non−Volatile RAM".  This means that the NVR where the set−up information is stored has become
corrupted.  The terminal will likely still work but the configuration that was last saved when someone last
configured the terminal has likely been lost.  Try configuring again and then save it.  It might work.  On very
old terminals (early 1980's) there was a battery−powered CMOS to save the configuration so in this case the
problem could be just a dead battery.  Sometimes the EEPROM chip (no battery needed) goes bad after too
many saves.  It may be hard to find.  If you can't fix it you are either stuck with the default configuration or
you may have escape sequences sent to the terminal when you start it up to try to configure it. 

19.7 Capacitors

Electrolytic capacitors have a metal shell and are may become weak or fail if they set for years without being
used.  Sometimes just leaving the terminal on for a while will help partially restore them. If you can, exercise
any terminals you have in storage by turning them on for a while every year or so. 

Note that cheap electrolytic capacitors designed for use in audio circuits may fail if used in high frequency
horizontal circuitry.  For this, you need low resistance (low ESR) capacitors.  Replace non−polarized
capacitors (NP) with the same (or with "bi−polar"). 

If the terminal display takes several minutes of warmup before it's  OK then it's likely that you have one or
more bad electrolytic capacitors.  One trick to find the bad one is to parallel each suspected bad one with a
good one (of at least the same voltage rating and capacitance of roughly the same order of magnitude).  If the
display improves a lot when you do this, then you've likely found the bad capacitor.  Be careful not to get
shocked when doing this.  The actual voltage with respect to ground may be much higher than the voltage
rating of the capacitor. 

19.8 Keyboards 

Interchangeability

The keyboards for terminals are not the same as keyboards for PC's.  The difference is not only in the key
layout but in the codes generated when a key is pressed.  Also, keyboards for various brands and models of
terminals are not always interchangeable with each other.  Sometimes one get an "incompatible" keyboard to
partially work on a terminal.  All the ASCII keys will work OK, but special keys such as set−up and break
will not work correctly. 
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How They Work

Most keyboards just make a simple contact between two conductors when you press a key.  Electronics inside
a chip in the keyboard converts this contact closure into a code sent over the keyboard's external cable.
Instead of having a separate wire (or conductor) going from each key to the chip, the following type scheme
is used. Number the conductors say from 1−10 and A−J.  For example: conductor 3 goes to several keys and
conductor B goes to several keys, but only one key has both conductors 3 and B going to it.  When that key is
pressed, a short circuit is established between 3 and B.  The chip senses this short and knows what key has
been pressed.  Such a scheme reduces the number of conductors needed (and  reduces the number of pins
needed on the chip).  It's a similar scheme to what is called a "crossbar switch". 

Modern vs Old Keyboards

While the modern keyboard and the old fashioned type look about the same, the mechanics of operation are
different.  The old ones have individual key switches under the key−caps with each switch enclosed in a hard
plastic case.  The modern ones use large flexible plastic sheets (membrane) the size of the keyboard.  A plastic
sheet with holes in it is sandwiched between two other plastic sheets containing printed circuits (including
contact points).  When you press a key, the two "printed" sheets are pressed together at a certain point, closing
the contacts printed on the sheets at that point. 

One Press Types 2 Different Characters 

If, due to a defect, conductors 3 and 4 become shorted together then pressing the 3−B key will also short 4
and B and the chip will think that both keys 3−B and 4−B have been pressed.  This is likely to type 2 different
characters when all you wanted was one character. 

Keyboard doesn't work at all

If none of the keys work try another keyboard (if you have one) to verify that the keyboard is the problem.
One cause is a broken wire inside the cord (cable) that connects it to the terminal.  The most likely location of
the break is at either end of the cord.  Try wigging the ends of the cord while tapping on a key to see if it
works intermittently.  If you find a bad spot, you may carefully cut into the cord with a knife at the bad spot
and splice the broken conductor. Sometimes just a drop of solder will splice it.  Seal up the cord with
electrical tape, glue, or caulk.  A keyboard that has gotten wet may not work at all until it's dry. 

Typing b displays bb, etc. (doubled)

If all characters appear double there is likely nothing wrong with the keyboard.  Instead, your terminal has
likely been incorrectly set up for half−duplex (HDX or local echo=on) and every character you type is echoed
back both from the electronics inside your terminal and from your host computer.  If the two characters are
not the same, there may be a short circuit inside your keyboard.  See  One Press Types 2 Different Characters

Row upon row of the same character appears

This may happen when auto−repeat is enabled and a key is held pressed down (or the like).  It may be a key
that sticks down when typed or it could be an electrical short that has the same effect. 
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Key sticks in down position (individual switches)

First try tapping on it hard several times but it's not likely to fix it.  Next, your can either remove the keycap
(if it is removable) and squirt a little cleaner on the push rod or work the key up and down while pushing on it
sideways (or both).  If this doesn`t work you may need to take the switch apart and clean the components. 

If you decide to remove the keycap see  Keyboards with individual switches.  Press repeatedly on the push rod
until it works OK and also displays its character on the screen.  At first, the cleaner may cause the key to fail
to display its character.  Some keys stick due to stickiness on the keycap bottom surface..  If the key sticks in
the fully down position this could be the problem.  So you might need to clean this this area too. 

If you decide to push it sideways, use a small screwdriver to push sideways with while pushing the key up
and down with both your finger and the screwdriver.  You should push it sideways in one of the four
directions and try different directions.  What you are doing by this is attempting to force out a foreign particles
that are rubbing on the side of the key's push−rod and making it stick.  Again, the problem may return later. 

Always test the key just after fixing it and a short time later.  To test the key, push it down very slowly and
see if it sticks.  Also push it sideways a little as you're pushing it down.  If you hit it fast or push it straight
down, then you may not observe the stickiness.  This test will detect a key that seemingly  works OK but is
likely to cause trouble later on. 

Key electrically shorted

If you suspect that a key is shorted out, fix it by cleaning the contacts per  Cleaning Keyboard Contacts. If this
problem happens at the login prompt see  Key shorted. 

Liquid spilled on the keyboard

If water or watery liquid has been spilled on the keyboard (or if it was exposed to rain, heavy dew, or
dampness) some (or all) keys may not work right.  The dampness may cause a key to short out (like it was
pressed down all the time) and you may see the screen fill up with that letter if auto−repeat is enabled.  If it's
gotten wet and then partially (or fully) dried out, certain keys may not work due to deposits on the contact
surfaces.  For the modern type of keyboard, one may readily take apart the plastic sheets inside and dry/clean
them.  For the old type one may let it dry out in the sun or oven (low temp.).  When it's dry it may still need
contact cleaner on some keys as explained below. 

Cleaning keyboard contacts 

Keyboards with membranes

On some newer keyboards, the plastic sheets (membranes) are easy to remove for inspection and cleaning if
needed.  You only need to remove several screws to take apart the keyboard and get to the sheets.  On some
old IBM keyboards the sheets can't be removed without breaking off many plastic tabs which will need to be
repaired with glue to put back (probably not worthwhile to repair).  Such a keyboard may sometimes be made
to work by flexing, twisting, and/or pounding the assembly containing the plastic sheets. 
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Keyboards with individual switches 

What follows is for older keyboards that have separate hard plastic switches for each key.  Before going to all
the work of cleaning electrical contacts first try turning the keyboard upside−down and working the bad keys.
This may help dislodge dirt, especially if you press the key hard and fast to set up vibration. Pressing the key
down and wiggling it from side to side, etc. often helps. 

Often the key−caps may be removed by prying them upward using a small screwdriver with the tip placed
under a key while preventing excessive tilting with a finger.  There exists a special tool known as keycap
puller but you can get by without it.  (Warning: Key−caps on modern keyboards don't pry up.)  The key−cap
may tilt a bit and wobble as it comes loose.  It may even fly up and onto the floor.  Then you have two choices
on how to clean the contacts: Use contact cleaner spray directly on top of the key switch, or take the key
switch apart and clean it.  Still another choice is to replace the key switch with a new or used one. 

Directly spraying contact cleaner or the like (obtained at an electronics store) into the top of the key switch is
the fastest method but it may not work.  Before spraying, clean the area around it a little.  With the keyboard
live (or with the key contacts connected to an ohm−meter) use the plastic tube which came with the spray to
squirt cleaner so it will get inside the key switch.  Try to move the key push rod up and down while spraying.
Don't let the cleaning liquid get under nearby keys where it may pick up dust and then seep (with the dust)
into adjacent key switches.  If you make this mistake you may fix one key but damage nearby keys.  If this
should happen, immediately work (repeatedly press) the affected nearby keys until they continue to work OK. 

You might tilt the keyboard so that the cleaner flows better into the contacts.  For the CIT101e terminal with
an Alps keyboard, this means tilting the digit row up toward the ceiling.  While moving the key switch up and
down with a pen or small screwdriver handle avoid getting the toxic cleaner liquid on your skin (or wear
gloves).  You might try turning the keyboard upside−down while working the key to drain off remaining
cleaner.  I don't usually do this.  The more cleaner you squirt in the more likely it will fix it but it is also more
likely to do more damage to the plastic or contaminate adjacent keys, so use what you think is just enough to
do the job.  Once the key works OK, work it up and down a little more and test it a half minute later, etc. to
make sure it will still work OK. 

Sometimes a key works fine when the contacts inside are saturated with contact cleaner liquid.  But when the
liquid dries a few minutes later then the resulting scale deposit left from the evaporation of the cleaning liquid
on the contacts, prevents good contact.  Then the key may work erratically (if at all).  Operating the key when
the liquid is drying inside may help.  Some switches have the contacts nearly sealed inside so little if any
contact cleaner reaches the contacts. The cleaner that does get to the contacts may carry contamination with it
(cleaning around the tops before spraying helps minimize this). 

If you need to disassemble the key switch, first inspect it to see how it is installed and comes apart.
Sometimes one may remove the cover of the switch without removing the switch from the keyboard.  To do
this pry up (or pull up) the top of the key switch after prying apart thin plastic tabs that retain it.  You may be
able to use two small screwdrivers for this and be able to pry up the switch while prying apart the plastic
retaining tabs.  Don't pry to hard or you may break the plastic.  If this can't be done, you may have to unsolder
the switch and remove it in order to take it apart (or replace it).  Once the switch has been taken apart you still
may not be able to see the contacts if the contact surfaces are sandwiched together (nearly touching).  You
may get contact cleaner on the contacts by squirting a little cleaned on an edge where it can penetrate into the
contacts as you work the contacts open and closed with a screwdriver. 

If the above doesn't work.  Slightly prying apart the conducting surfaces while applying cleaner might help.
There may be some kind of clip holding the contact surfaces together which needs to be removed before
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prying.  With cleaner on the contacts, work them.  Tilting the keyboard or inverting it may help.  Take care not
to loose small parts as they may fly up into the air when taking apart a key switch.  As a last resort, you may
try bending the moving part that the push−rod pushes so as to make a stronger contact.  In my terminal this
part looks like the electrical contact but it likely just pushes the real electrical contact (thru a thin insulator). 

When putting the key switch back together, make sure that the spring is in the right place.  If, after you
assemble the switch, the key pushes down too hard or too easy, the spring is likely not positioned right.  If the
spring is supposed to be recessed into a hole on the push rod, one way to temporarily "glue" the spring into
the push−rod is to use a half−drop of water on the end of the spring.  Then insert this end into the push rod
and assemble quickly before the water dries.  This should keep the spring from falling out of the push rod
during assembly.  Instead of using water, working on the keyboard when it's standing on end will keep the
spring from falling out during assembly. 

20. Appendix A: General

20.1 List of Linux Terminal Commands

Sending a command to the terminal

setterm: long options• 
tput: terse options• 
tset: initializes only• 
clear: clears screen• 
setterm −reset: sends reset string• 

Configuring the terminal device driver

Setserial:• 
Stty• 

Terminfo

Terminfo Compiler (tic) terminfo compiler & translator• 
toe: shows list of terminals for which you have terminfo files• 
infocmp compares or displays terminfo entries• 

Other

gitkeys: shows what bytes each key sends to the host.• 
tty: shows what tty port you are connected to.• 
set (or tset −q): shows the value of TERM, the terminfo entry name• 
tset: sets TERM interactively and initializes• 

20.2 The Internet and Books

 Text−Terminal−HOWTO 

20. Appendix A: General 103



Terminal Info on the Internet 

Shuford's Website at the University of Tennessee has a great deal of useful information about text
terminals.

• 

VT terminal information and history  http://www.vt100.net/• 
Boundless purchased the VT and Dorio terminal business from DEC.  To get Specs select either
ADDS, VT, or DORIO links.  Then select a "data sheet" link.  Then on the data sheet select the "Go to
Specs" link.

• 

Wyse has detailed info (such as escape sequences) in it's knowledge base.  It's not as complete as a
real manual since it mainly cover "native" personality.  Wyse text−terminals database For current
models see  Wyse  terminals.

• 

Teemworld Escape Sequences is a list of escape sequences (and control codes) for some terminal
emulations (including VT 100, 300, 420, and Wyse).

• 

ncurses FAQ• 
comp.terminals is the newsgroup for terminals• 

Books related to terminals

EIA−232 serial port see  EIA−232 (RS−232) Books.• 
Repair see  Repair Books &  Websites.• 
Terminfo database see  Termcap Documents• 

Entire books on terminals

As far as I know, there is no satisfactory book on text terminals Although this HOWTO has been published as
a book, I don't suggest that that you buy it if you have access to the online version which I'm improving on
every month or so.  The following are mainly of historical interest: 

Handbook of Interactive Computer Terminals by Duane E. Sharp; Reston Publishing Co. 1977.
(mostly obsolete)

• 

Communicating with Display Terminals by Roger K. deBry; McGraw−Hill 1985.  (mostly on IBM
synchronous terminals)

• 

The "HANDBOOK ... " presents brief specifications of over 100 different models of antique terminals made
in the early 1970's by over 60 different companies.  It also explains how they work physically but has a
diagram for a CRT which erroneously shows electrostatic deflection of the electron beam (p. 36).  Terminals
actually used magnetic deflection (even in the 1970's).  This book explains a number of advanced technical
concepts such as "random scan" and "color penetration principle". 

The "COMMUNICATING ... " book in contrast to the "Handbook ... " ignores the physical and electronic
details of terminals.  It has an entire chapter explaining binary numbers (which is not needed in a book on
terminals since this information is widely available elsewhere).  It seems to mostly cover old IBM terminals
(mainly the 3270) in block and synchronous modes of operation.  It's of little use for the commonly used
ANSI terminals used today on Unix−like systems.  Although it does discuss them a little it doesn't show the
various wiring schemes used to connect them to serial ports. 

Books with chapters on terminals

These chapters cover almost nothing about the terminals themselves and their capabilities.  Rather, these
chapters are mostly about how to set up the computer (and its terminal driver) to work with terminals.  Due to
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the differences of different Unix−like systems, much of the information does not not apply to Linux. 

Unix Power Tools by Jerry Peck et. al.  O'Reilly 1998. Ch. 5 Setting Up Your Terminal, Ch. 41:
Terminal and Serial Line Settings, Ch. 42: Problems With Terminals

• 

Advanced Programming in the Unix Environment by W. Richard Stevens Addison−Wesley, 1993.
Ch. 11: Terminal I/O, Ch. 19: Pseudo Terminals

• 

Essential System Administration by Aleen Frisch, 2nd ed. O'Reilly, 1998.  Ch. 11: Terminals and
Modems.

• 

The "UNIX POWER TOOLS" book has 3 short chapters on text terminals. It covers less ground than this
HOWTO but gives more examples to help you. 

The "ADVANCED PROGRAMMING ... " Chapter 11 covers only the device driver included in the
operating system to deal with terminals.  It explains the parameters one gives to the stty command to
configure the terminal. 

The "ESSENTIAL SYSTEM ..." book's chapter has more about terminals than modems.  It seems well
written. 

20.3 Non−Linux OSs 

Under Microsoft's DOS one may use the DOS command "ctty COM2" so that the DOS command line will
display on a serial terminal (on COM2 in this example).  Unfortunately one can then no longer use the
computer monitor since MS DOS is not a multiuser operating system.  Nor can more than one terminal be
used.  So this capability is of little (if any) benefit.  If you emulate DOS under Linux with the free dosemu, it's
reported that you can run several terminals (multiuser).  But it's reported that PCTerm emulation doesn't work
with it (yet ??). 

While MS didn't create a "multiuser DOS" OS, others did.  This permits the use of many terminals on one
DOS PC.  It's compatible with most MS−DOS software.  One multiuser DOS OS is named "REAL/32".  The
terminal's "pcterm" emulation is used here.  There also may be a "scan" (scancodes) setup mode which needs
to be set.  Other OSs such as PICK, PC−MOS, and Concurrent DOS were/are multiuser and support terminals. 

There are 3 programs for Linux which let you run Windows applications on a Linux PC: free: Wine,
non−free: VMware and NeTraverse.  Can they use text−terminals under DOS?  Wine can't since it doesn't
have a DOS mode.  The other two require you to run the MS Windows OS software as a "guest OS".  The
guest MS Windows OS has a DOS mode but it's not of much use for text−terminals since it's not multiuser. 

For other unix−like OSs, the configuration of the host computer for terminals is usually significantly different
than for Linux.  Here are some links to on−line manuals for unix−like systems. 

SCO's OpenServer  Adding Serial Terminals in SCO OpenServer Handbook.• 
Hewlett−Packard's HP−UX "Configuring Terminals and Modems" (Url to it is dead.)• 

21. Appendix B: Escape Sequence Commands Terminology 

These are sometimes called "control sequences".  This section of Text−Terminal−HOWTO is incomplete (and
may never be complete as there are such a huge number of control sequences).  This section is for reference
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and perhaps really belongs in something that would be called "Text−Terminal−Programming−HOWTO". 

An example of an ANSI standard escape sequence is ESC[5B which moves the cursor down 5 lines.  ESC is
the Escape character.  The parameter 5 is included in the sequence.  If it were 7 the cursor would move down 7
lines, etc.  A listing for this sequence as "move cursor down x lines: ESC[xB" is easy to to understand.  But
command jargon such as: "tertiary device attribute request" is less comprehensible.  This section will try to
explain some of the more arcane jargon used for escape sequence commands.  A full listing (including the
escape sequence codes for the ANSI standard) is a "wish list" project.  Since many escape sequences do the
same thing as is done when setting up the terminal with  Set−Up Options, such escape sequences options will
not be repeated here. 

21.1 Esc Sequence List 

For a list of many (but not all) escape sequences for various terminals see  Teemworld Escape Sequences.
These are used for terminal emulation and are not always the same as on the corresponding real terminal.  A
list for VT (not maintained) may be found at  Emulators FAQ.  Search for "VT".  For downloading manuals see
VT Manuals. 

21.2 8−bit Control Codes

Table of 8−bit DEC control codes (in hexadecimal).  Work on VT2xx or later.  CSI is the most common. 

ACRONYM  FULL_NAME                      HEX     REPLACES
IND Index (down one line)               84      ESC D
NEL Next Line                           85      ESC E
RI  Reverse Index (one line up)         8D      ESC M
SS2 Single Shift 2                      8E      ESC N
SS3 Single Shift 3                      8F      ESC O
DCS Device Control String               90      ESC P
CSI Control Sequence Introducer)        9B      ESC [
ST  String Terminator                   9C      ESC \

21.3 Printer Esc 

Auto Print on/off: When on, data from the host is also teed (sent) to the printer port of the terminal
(and also shows on the terminal screen).

• 

Print Controller on/off: When on, data from the host is sent only to the printer (nothing shows on the
terminal screen).

• 

21.4 Reports

These sequences are usually a request sent from the host to request a report from the terminal.  The terminal
responds by sending a report (actually another escape sequence) to the host which has embedded in it certain
values telling the host about the current state of the terminal.  In some cases a report may be sent to the host
even if it wasn't asked for.  This sometimes happens when set−up is exited. By default no unsolicited reports
should be sent. 

Request for Status (Report Operating Status):  Meaning of replies for VT100 is either "I'm OK" or
"I'm not OK"

• 

Request for Device Attributes:  The "device" is usually the printer.  Is there a printer?  Is it ready?• 
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Reqest for Tertiary Device Attributes (VT):  Reply is report that was entered during set−up.  The
tertiary device is the 3rd device (the printer or auxiliary port device ??).  The 1st device may be the
host computer and the 2nd device the terminal.

• 

Request for Terminal Parameters:  What is the parity, baud rate, byte width, etc.  This request doesn't
seem to make much sense, since if the host didn't already know this it couldn't communicate with the
terminal or send a reply.

• 

21.5 Cursor Movements

The cursor is where the next character received from the host will be displayed.  Most of the cursor
movements are self−explanatory. "index cursor" means to move the cursor down one line.  Cursor movements
may be relative to the current position such as "move 4 spaces left" or absolute such as "move to row 3,
column 39".  Absolute is called "Direct Cursor Positioning" or "Direct Cursor Addressing". 

The home position is row 1 col. 1 (index origin is 1).  But where this home position is on the physical screen
is not completely clear.  If "Cursor Origin Mode" = "Relative Origin Mode" is set, then home is at the top of
the scrolling region (not necessarily the top of the screen) at the left edge of the screen.  If "Absolute Origin
Mode" is set (the same as unsetting any of the two modes in the previous sentence) then home is at the upper
left corner of the screen.  On some old terminals if "Cursor Origin Mode" is set it means that it's relative. 

21.6 Pages (definition) 

See  Pages for an explanation of pages. There are a number of escape sequences to deal with pages.  Text may
be copied from one page to another and one may move the cursor from page to page.  Switching pages may or
may not be automatic: when the screen becomes full (page 1) then more data from the host goes to page 2.
The cursor may only be on one page at a time and characters which are sent to the terminal go there.  If that
page is not being displayed, new text will be received by the terminal and go into display memory, but you
will not see it (until the terminal is switched to that page). 

22. Appendix C: Serial Communications on EIA−232
(RS−232)

22.1 Intro to Serial Communication

(Much of this section is now found in Serial−HOWTO.)  Text terminals on Unix−like systems (and on PC's)
are usually connected to an asynchronous 232 serial port of a computer.  It's usually a RS−232−C,
EIA−232−D, or EIA−232−E.  These three are almost the same thing.  The original RS prefix became EIA
(Electronics Industries Association) and later EIA/TIA after EIA merged with TIA (Telecommunications
Industries Association).  The EIA−232 spec provides also for synchronous (sync) communication but the
hardware to support sync is almost always missing on PC's.  The RS designation is obsolete but is still in use.
EIA will be used in this article. 

The serial port is more than just a physical connector on the back of a computer or terminal.  It includes the
associated electronics which must produce signals conforming to the EIA−232 specification.  The standard
connector has 25 pins, most of which are unused.  An alternative connector has only 9 pins.  One pin is used to
send out data bytes and another to receive data bytes.  Another pin is a common signal ground.  The other
"useful" pins are used mainly for signalling purposes with a steady negative voltage meaning "off" and a
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steady positive voltage meaning "on". 

The UART (Universal Asynchronous Receiver−Transmitter) chip does most of the work.  Today, the
functionality of this chip is usually built into another chip. 

22.2 Voltages

Voltage for a bit

At the EIA−232 serial port, voltages are bipolar (positive or negative with respect to ground) and should be
about 12 volts in magnitude (some are 5 or 10 volts).  For the transmit and receive pins +12 volts is a 0−bit
(sometimes called "space") and −12 volts is a 1−bit (sometimes called "mark").  This is known as inverted
logic since normally a 0−bit is both false and negative while a one is normally both true and positive.
Although the receive and transmit pins are inverted logic, other pins (modem control lines) are normal logic
with a positive voltage being true (or "on" or "asserted") and a negative voltage being false (or "off" or
"negated").  Zero voltage has no meaning (except it usually means that the PC is powered off). 

A range of voltages is allowed.  The specs say the magnitude of a transmitted signal should be between 5 and
15 volts but must never exceed 25 V.  Any voltage received under 3 V is undefined (but some terminals will
accept a lower voltage as valid).  One sometimes sees erroneous claims that the voltage is commonly 5 volts
(or even 3 volts) but it's usually 11−12 volts.  If you are using a EIA−422 port on a Mac computer as an
EIA−232 (requires a special cable) or EIA−423 then the voltage will actually be only 5 V.  The discussion
here assumes 12 V.  There is much confusion about voltages on the Internet. 

Note that normal computer logic normally is just a few volts (5 volts was once the standard) so that if you try
to use test equipment designed for testing 3−5 volt computer logic (TTL) on the 12 volts of a serial port, it
may damage the test equipment. 

Voltage sequence for a byte 

The transmit pin (TxD) is held at −12 V (mark) at idle when nothing is being sent.  To start a byte it jumps to
+12 V (space) for the start bit and remains at +12 V for the duration (period) of the start bit.  Next comes the
low−order bit of the data byte.  If it's a 0−bit nothing changes and the line remains at +12 V for another
bit−period. Then comes the next bit, etc.  Finally, a parity bit may be sent and then a −12 V (mark) stop bit.
The line remains at −12 V (idle) until the next start bit.  Note that there is no return to 0 volts and thus there is
no simple way (except by a synchronizing signal) to tell where one bit ends and the next one begins for the
case where 2 consecutive bits are the same polarity (both zero or both one). 

A 2nd stop bit would also be −12 V, just the same as the first stop bit.  Since there is no signal to mark the
boundaries between these bits, the only effect of the 2nd stop bit is that the line must remain at −12 V idle
twice as long.  The receiver has no way of detecting the difference between a 2nd stop bit and a longer idle
time between bytes.  Thus communications works OK if one end uses one stop bit and the other end uses 2
stop bits, but using only one stop bit is obviously faster.  In rare cases 1 1/2 stop bits are used.  This means that
the line is kept at −12 V for 1 1/2 time periods (like a stop bit 50% wider than normal). 

22.3 Parity Explained 

Characters are normally transmitted with either 7 or 8 bits (of data).  An additional parity bit may (or may not)
be appended to this resulting in a byte length of 7, 8 or 9 bits.  Some terminal emulators and older terminals
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do not allow 9 bits.  Some prohibit 9 bits if 2 stop bits are used (since this would make the total number of bits
too large: 12 bits total). 

The parity may be set to odd, even or none (mark and space parity may be options on some terminals).  With
odd parity, the parity bit is selected so that the number of 1−bits in a byte, including the parity bit, is odd.  If a
such a byte gets corrupted by a bit being flipped, the result is an illegal byte of even parity.  This error will be
detected and if it's an incoming byte to the terminal an error−character symbol will appear on the screen.
Even parity works in a similar manner with all legal bytes (including the parity bit) having an even number of
1−bits.  During set−up, the number of bits per character usually means only the number of data bits per byte
(7 for true ASCII and 8 for various ISO character sets). 

A "mark" is a 1−bit (or logic 1) and a "space" is a 0−bit (or logic 0).  For mark parity, the parity bit is always a
one−bit.  For space parity it's always a zero−bit.  Mark or space parity only wastes bandwidth and should be
avoided when feasible.  "No parity" means that no parity bit is added.  For terminals that don't permit 9 bit
bytes, "no parity" must be selected when using 8 bit character sets since there is no room for a parity bit. 

22.4 Forming a Byte (Framing)

In serial transmission of bytes via EIA−232 ports, the low−order bit is always sent first.  Serial ports on PC's
use asynchronous communication where there is a start bit and a stop bit to mark the beginning and end of a
byte.  This is called framing and the framed byte is sometimes called a frame.  As a result a total of 9, 10, or 11
bits are sent per byte with 10 being the most common.  8−N−1 means 8 data bits, No parity, 1 stop bit.  This
adds up to 10 bits total when one counts the start bit.  One stop bit is almost universally used. At 110 bits/sec
(and sometimes at 300 bits/sec) 2 stop bits were once used but today the 2nd stop bit is used only in very
unusual situations (or by mistake since it seemingly still works OK that way). 

22.5 Limitations of EIA−232

Low Speed & Short Distance

The conventional EIA−232 serial port is inherently low speed and is severely limited in distance.  Ads often
read "high speed" but it can only work at high speed over very short distances such as to a modem located
right next to the computer.  All of the wires use a common ground return so that twisted−pair technology
(needed for high speeds) can't be used without additional hardware.  However some computers have more
modern interfaces.  See  Successors to EIA−232. 

It is somewhat tragic that the RS−232 standard from 1969 did not use twisted pair technology which could
operate about a hundred times faster.  Twisted pairs have been used in telephone cables since the late 1800's.
In 1888 (over 110 years ago) the "Cable Conference" reported its support of twisted−pair (for telephone
systems) and pointed out its advantages.  But over 80 years after this approval by the "Cable Conference",
RS−232 failed to utilize it.  Since RS−232 was originally designed for connecting a terminal to a low speed
modem located nearby, the need for high speed and longer distance transmission was apparently not
recognized. 

Successors to EIA−232 

See the Serial−HOWTO section "Other Serial Devices" for a longer discussion about non−EIA−232 ports.  A
number of EIA standards have been established for higher speeds and longer distances using twisted−pair
(balanced) technology.  Balanced transmission can sometimes be a hundred times faster than unbalanced
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EIA−232.  For a given speed, the distance (maximum cable length) may be many times longer with twisted
pair.  Few terminals seem to support them.  While many terminals also support EIA−423 is is almost like
EIA−232 but is only 5 volts and somewhat higher speeds (without using twisted pair). Twisted pair includes
EIA−422, EIA−530−A, HSSI (High Speed Serial Interface), USB (Universal Serial Bus), and of course
ethernet. 

Line Drivers

For a text terminal, the EIA−232 speeds are fast enough but the usable cable length is often too short.
Balanced technology could fix this.  The common method of obtaining balanced communication with a text
terminal is to install 2@ line drivers in the serial line to convert unbalanced to balanced (and conversely).
They are a specialty item and are expensive if purchased new. 

22.6 Synchronization & Synchronous 

How "Asynchronous" is Synchronized

Per EIA−232 there are only two states of the transmit (or receive) wire: mark (−12 V) or space (+12 V).
There is no state of 0 V.  Thus a sequence of 1−bits is transmitted by just a steady −12 V with no markers of
any kind between bits.  For the receiver to detect individual bits it must always have a clock signal which is in
synchronization with the transmitter clock.  Such clocks generate a "tick" in synchronization with each
transmitted (or received) bit. 

For asynchronous transmission, synchronization is achieved by framing each byte with a start bit and a stop
bit (done by hardware).  The receiver listens on the line for a start bit and when it detects one it starts its clock
ticking.  It uses this clock tick to time the reading of the next 7, 8 or 9 bits.  (It actually is a little more complex
than this since several samples of a bit are often taken and this requires additional timing ticks.)  Then the stop
bit is read, the clock stops and the receiver waits for the next start bit.  Thus async is actually synchronized
during the reception of a single byte but there is no synchronization between one byte and the next byte. 

Defining Asynchronous vs Synchronous

Asynchronous (async) means "not synchronous".  In practice, an async signal is what the async serial port
sends and receives which is a stream of bytes each delimited by a start and stop bit.  Synchronous (sync) is
most everything else.  But this doesn't explain the basic concepts. 

In theory, synchronous means that bytes are sent out at a constant rate one after another in step with a clock
signal tick.  There is often a separate wire or channel for sending the clock signal. Asynchronous bytes may be
sent out erratically with various time intervals between bytes (like someone typing characters at a keyboard). 

There are borderline situations that need to be classified as either sync or async.  The async serial port often
sends out bytes in a steady stream which would make this a synchronous case but since they still have the
start/stop bits (which makes it possible to send them out erratically) its called async.  Another case is where
data bytes (without any start−stop bits) are put into packets with possible erratic spacing between one packet
and the next.  This is called sync since the bytes within each packet must be transmitted synchronously. 
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Synchronous Communication

Did you ever wonder what all the unused pins are for on a 25−pin connector for the serial port?  Most of them
are for use in synchronous communication which is seldom implemented on PC's.  There are pins for sync
timing signals as well as for a sync reverse channel.  The EIA−232 spec provides for both sync and async but
PC's use a UART (Universal Asynchronous Receiver/Transmitter) chip such as a 16450, 16550A, or 16650
and can't deal with sync.  For sync one needs a USART chip or the equivalent where the "S" stands for
Synchronous.  Since sync is a niche market, a sync serial port is likely to be quite expensive. 

Besides the sync part of the EIA−232, there are various other EIA synchronous standards.  For EIA−232, 3
pins of the connector are reserved for clock (or timing) signals.  Sometimes it's a modem's task to generate
some timing signals making it impossible to use synchronous communications without a synchronous modem
(or without a device called a "synchronous modem eliminator" which provides the timing signals). 

Although few serial ports are sync, synchronous communication does often take place over telephone lines
using modems which use V.42 error correction.  This strips off the start/stop bits and puts the date bytes in
packets resulting in synchronous operation over the phone line. 

22.7 Block Mode 

Introduction to Block Mode

Block mode is seldom used with Linux and is mainly of historical interest.  In block mode, when one types at
a terminal the results are saved in the terminal memory and are not sent just yet to the host computer.  Such
terminals often have built−in editing capabilities. When the user presses certain keys (such as the send key)
what has been saved in the terminal memory is sent to the host computer.  Now the Linux editors vi and
emacs, must react instantly to typing certain keys so block mode isn't feasible.  Such editors and other
interactive programs can't permit the long delay in sending a keystroke to the computer which is inherent in
block mode.  So they can't use block mode. 

The old IBM mainframe interface uses block mode (see  IBM Terminals  so many IBM terminals are
block−mode only and also synchronous (see Section  Synchronization & Synchronous). 

Types of Block Modes, Forms

Block mode may itself have various sub−modes such as "page" (a page at a time) and "line" (a line at a time).
Some terminals have both block transmission modes and conventional character modes and may be switched
from one mode to another.  Async terminals which have block modes include HP2622A, Wyse60, VT130,
VT131, VT330, VT340, and Visual500.  Many later model terminals can emulate block mode.  But the Linux
console can't.  Block modes may include a forms capability where the host computer sends a form to the
terminal.  Then the user fills it out and hits the send key which sends only the data in the form back to the host
computer.  The form itself (not the data) is displayed on the screen in protected fields which don't get
transmitted to the host. 

Efficiency

Block mode takes load off the host computer, especially if the host computer's hardware is designed for block
modes (as IBM mainframes were).  In character mode every character typed is sent immediately to the serial
port and usually causes an interrupt at the host computer.  The host that receives the byte must stop whatever
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it is doing and fetch that character from the port hardware.  Even with UART's that have FIFO hardware
buffers, the hardware timeout is normally only the transmission time of 3 bytes so that an interrupt is usually
issued for every character typed. 

In true block mode a long block of characters is received using only one interrupt.  If block mode is used with
conventional async FIFO serial ports, an interrupt is needed only every 14 bytes since they have 16−byte
hardware buffers.  Thus much of the load and overhead of interrupt handling is eliminated and the computer
has more time to do other tasks when block mode is used. 

A significant savings for block mode occurs if the terminal is connected to its host via a network.  Without
block mode, every character (byte) typed is sent in its own packet including all the overhead bytes (40 in a
TCP/IP packet as used on the Internet).  With block mode, a large number of characters are sent in a single
packet. 

Problems with block mode

While block mode is more efficient, it is nearly extinct, and for good reason.  Faster and cheaper computers
made the higher efficiency less important.  For example, a 56k modem results in hundreds of interrupts per
second (every 14 characters) while typing at a terminal only causes a few interrupts per second (one for each
character typed).  So the number of interrupts caused by typing at a terminal is not very significant (unless you
have hundred of terminals connected to the same computer). 

Another point is that the efficiency is not of much significance where the user doesn't type in very much.
Editors are a primary example of where the user types in a lot.  But if you use block mode for editing, you
must then use the crude editor built into terminal.  Modern editors like vim and emacs are much better but
can't use block mode. Even in the days of mainframes with terminals, block mode wasn't used much except
by IBM.  A major reason was that software to utilize it was not widely available (except for IBM).  The
terminfo data base doesn't seem to include it and this would complicate writing software for it. 

22.8 EIA−232 (RS−232) Books 

(Note: The first book covers much more than just EIA−232.) 

Black, Uyless D.: Physical Layer Interfaces & Protocols, IEEE Computer Society Press, Los
Alamitos, CA, 1996.

• 

Campbell, Joe: The RS−232 Solution, 2nd ed., Sybex, 1982.• 
Putnam, Byron W.: RS−232 Simplified, Prentice Hall, 1987.• 
Seyer, Martin D.: RS−232 Made Easy, 2nd ed., Prentice Hall, 1991.• 

22.9 Serial Software

See  Serial Software for Linux software for the serial ports including getty and port monitors. 

23. Appendix D: Notes by Brand/Model

Here are notes by brand name that were too specific to a certain terminal to be put elsewhere in this HOWTO.
If you have some info to contribute on a certain terminal that is not covered elsewhere, it could go here.
Various models often have much in common which only need be written about in one place.  It would be nice
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if for each terminal model, there were a set of links linking to the documentation relevant to that model
(including escape codes).  There are so many models of terminals that such a task would be quite onerous and
I, David Lawyer (as of 1998), have no intention of attempting this.  Note that some VT (DEC) manuals are
now available on the Internet. See and  VT (DEC).  Wyse has put what amounts to its manuals on the Internet.
See  Wyse Terminals. 

23.1 CIT

CIT terminals were made in Japan in the 1980's for CIE Terminals. They ceased to be imported in the late
1980's.  The company, CIE, still makes CItoh printers (in 1997) but has no parts for its abandoned terminals.
Ernie at (714) 453−9555 in Irvine CA sells (in 1997) some parts for models 224, 326, etc. but has nothing for
the 80 and 101.  (The document you are now reading was written mostly on the 101e.) 

To save the Set−Up parameters press ^S when in Set−Up mode. cit80: Contrast: knob on rear of terminal,
cit101e: Brightness: use up/down arrow keys in Set−Up mode. 

23.2 IBM Terminals 

Don't confuse IBM terminals with IBM PC monitors.  Many IBM terminals don't use ASCII but instead use
an 8−bit EBCDIC code.  It's claimed that in EBCDIC the bit order of transmission is reversed from normal
with the high−order bit going first.  The IBM mainframe communication standards are a type of synchronous
communication in block mode (sends large packets of characters).  Two standards are "BISYNC" and "SNA"
(which includes networking standards).  Many of their terminals connect with coax cable (RG62A/U) and
naive persons may think the "BNC" connecter on the terminal is for ethernet (but it's not). 

While this IBM system is actually  more efficient than what is normally used in Linux, terminals meeting this
IBM standard will not currently work with Linux.  However, some IBM terminals are asynchronous ASCII
terminals and should work with Linux on PC's.  The numbers 31xx may work with the exception that 317x
and 319x are not ASCII terminals.  Before getting an IBM terminal, make sure there is a termcap (terminfo)
for it.  If their isn't, it likely will not work with Linux.  Even if there is a terminfo, it may not work.  For
example, there is a termcap for 327x but the 3270 is an EBCDIC synchronous terminal. 

The 3270 series includes the 3278 (late 1970's), 3279 with color and graphics, and the 3274 terminal
controller (something like the 3174). They may be used for both BISYNC and SNA.  The 3290 has a split
screen (splits into quarters). 

The synchronous IBM terminals don't connect directly to the IBM mainframe, but connect to a "terminal
controller" (sometimes called "cluster controller" or "communication controller").  Some of these controllers
can convert a synchronous signal to asynchronous so that in this case a synchronous terminal could indirectly
connect to a Unix−like host computer via its serial port.  But there is still a major problem and that is block
transmission.  See section  Block Mode. 

IBM 3153

It's claimed that the Aux port is DCE and uses a straight−thru cable. 
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23.3 Teletypes 

These are antiques and represent the oldest terminals.  They are like remotely controlled typewriters but are
large and noisy.  Made by the Teletype Corp., the first models were made in the 1920's and predate the
computer by over 30 years.  Early models used electro−mechanical relays and rotating distributors instead of
electronics.  Their Baudot code was only 5−bits per character as compared to 7−bit ASCII.  See the book
"Small Computer Systems Handbook" by Sol Libes, Hayden Books, 1978: pp. 138−141 ("Teletypes"). 

23.4 VT (DEC) 

Digital Equipment Corporation made the famous VT series of terminals including the commonly emulated
VT100.  In 1995 they sold their terminal business to SunRiver which is now named Boundless Technologies.
Detailed VT terminal information, some manuals, and history is at  http://www.vt100.net/.  Other information
is available at  Shuford's Website.  Information on current products is available from the Boundless website.
See  Terminal Info on the Internet. 

VT220: Some have a BNC connector for video output (not for input). Sometimes people erroneously think
this is for an ethernet connection. 

VT520: Supports full DTR/DSR flow control. 

Dorio: Can emulate many other terminals.  The "sco unix console" is claimed to be a powerful emulation
using the "scoansi" terminfo. 

23.5 Wyse Terminals 

For detailed manual−like information on old terminals see
http://www.wyse.com/service/support/kbase/wyseterm.asp.  This information includes specs, lists of escape
sequences, part lists, FAQs, setup info, etc.  Thanks to Wyse for providing this. For the specs on more recent
terminals see See  Wyse terminals. 

Wyse terminals were lower in cost than other brands and they captured a major share of the market.  There
were concerns about the quality of these terminals, especially the Wyse 50.  But the large number of failure
reports is due in part to the large number of Wyse terminals in use. 

Wyse 50

Reported not to last very long. 

Wyse 60

Display adjustments (must remove cover): Brightness VR202, Height VR302, Width VR101 (also affects
height).  If you want to use it in Native Personality, then the arrow−key codes will conflict with the codes
used in vi (such as ^L).  To fix this set "Application key mode" with ESC   3.  This results in the arrow keys
sending 0xd1 − 0xd4. Due to a bug in the readline interface of the Bash shell, you need to edit /etc/inputrc so
that the arrow keys will work in Bash.  See  Bugs in Bash
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Wyse 85

Can emulate VT52/VT100/VT200.  Press F3 for setup.  After moving left/right to go the a menu "icon", press
space to select it.  Scroll thru setup menus with up/down keys.  Press F3 at any time to reenter setup (without
loosing any settings). 

Wyse 99−GT

Here is the setup Menus of the Wyse99GT (late 1980's).  Note that TERM means "termination" (character)
and not "terminal". 

  WYSE 99−GT Terminal Set−Up as used at the University of CA, Irvine
                by David Lawyer, April 1990

                        F1 DISP:
COLUMNS=80              LINES=24                CELL SIZE=10 X 13
STATUS LINE=STANDARD    BACKGROUND=DARK         SCROLL SPEED=JUMP
SCREEN SAVER=OFF        CURSOR=BLINK BLOCK      DISPLAY CURSOR=ON
ATTRIBUTE=CHAR          END OF LINE WRAP=ON     AUTO SCROLL=ON
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        F2  GENERAL:
PERSONALITY=VT 100      ENHANCE=ON              FONT LOAD=OFF
COMM MODE=FULL DUPLEX   RCVD CR=CR              SEND ACK=ON
RESTORE TABS=ON         ANSWERBACK MODE=OFF     ANSWERBACK CONCEAL=OFF
WIDTH CHANGE CLEAR=OFF  MONITOR=OFF             TEST=OFF
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        F3 KEYBRD:
KEYCLICK=OFF            KEYLOCK=CAPS            KEY REPEAT=ON
RETURN=CR               ENTER=CR                FUNCT KEY=HOLD
XMT LIMIT=NONE          FKEY XMT LIMIT=NONE     BREAK=170MS
LANGUAGE=US             MARGIN BELL=OFF         PRINTER RCV=OFF
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        F4 COMM:
DATA/PRINTER=AUX/MODEM    MDM RCV BAUD RATE=9600  MDM XMT BAUD RATE=9600
MDM DATA/STOP BITS=8/1    MDM RCV HNDSHAKE=NONE   MDM XMT HNDSHAKE=NONE
MDM PARITY=NONE           AUX BAUD RATE=9600      AUX DATA/STOP BITS=8/1
AUX RCV HNDSHAKE=NONE     AUX XMT HNDSHAKE=NONE   AUX PARITY=NONE
(There is a main port (Modem=MDM) and an Auxiliary Port (AUX)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        F5 MISC 1:
WARNING BELL=ON         FKEY LOCK=OFF           FEATURE LOCK=ON
KEYPAD=NUMERIC          DEL=DEL/CAN             XFER TERM=EOS
CURSOR KEYS=NORMAL      MARGIN CTRL=0           DEL FOR LOW Y=ON
GIN TERM=CR             CHAR MODE=MULTINATIONAL
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        F6 MISC 2:
LOCAL=OFF               SEND=ALL                PRINT=NATIONAL
PORT=EIA DATA           SEND AREA=SCREEN        PRINT AREA=SCREEN
DISCONNECT=60 MSEC      SEND TERM=NONE          PRINT TERM=NONE
PRINT MODE=NORMAL       VT100 ID=VT100          POUND=US
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F7 TABS: You should see several "T" characters spaced 8 dots apart.
    If you don't, hit backspace.
F8 F/KEYS: Normally you will see no definitions for the Function Keys
    here (unless someone has set them up and saved them).  This means that
    they will normally generate their default settings (not displayed here).
    <ctrl><F5> shows the "user defined definition" of the F5 key, etc.
F9 A/BACK: Normally not defined: ANSWERBACK =
F10 EXIT: Selecting "DEFAULT ALL" will make the factory default settings
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    the default.

HINTS on use of WY−99GT User's Guide: Note that much that is missing from this Guide may be found in
the WY−99GT Programmer's Guide.  The VT100 emulation (personality) is known as ANSI and uses ANSI
key codes per p. A−10+ even though the keyboard may be ASCII.  A sub−heading on p. A−13 "ASCII
Keyboard" also pertains to VT100 because it has an "ANSI KEY ..." super−heading a few pages previously.
But not all ASCII keyboard headings pertain to VT100 since they may fall under a non−ANSI personality
super−heading which may found be a few pages previously.  Appendix H is the "ANSI Command Guide"
except for the VT52 (ANSI) personality which is found in Appendix G. 

Wyse 150

When exiting set−up using F12, hitting space changes "no" to "yes" to save the set−up.  The sentence to the
left of this no/yes is about "vertical alignment" and has nothing to do with this no/yes for saving the set−up
(confusing menu design). 

END OF Text−Terminal−HOWTO 
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