
Linux NFS−HOWTO

Tavis Barr

 tavis@mahler.econ.columbia.edu

Nicolai Langfeldt

 janl@linpro.no

Seth Vidal

 skvidal@phy.duke.edu

2000−12−28

Table of Contents

1. Preamble..1
1.1. Legal stuff...1
1.2. Disclaimer...1
1.3. Feedback...1
1.4. Translation..1
1.5. Dedication...1

2. Introduction...2
2.1. What is NFS?..2
2.2. What is this HOWTO and what is it not?...2
2.3. Knowledge Pre−Requisites...2
2.4. Software Pre−Requisites: Kernel Version and nfs−utils..3
2.5. Where to get help and further information...3

3. Setting Up an NFS Server..4
3.1. Introduction to the server setup...4
3.2. Setting up the Configuration Files..4

3.2.1. /etc/exports..4
3.2.2. /etc/hosts.allow and /etc/hosts.deny..6

3.3. Getting the services started...8
3.3.1. Pre−requisites...8
3.3.2. Starting the Portmapper..8
3.3.3. The Daemons..8

3.4. Verifying that NFS is running..9
3.5. Making changes to /etc/exports later on...9

4. Setting up an NFS Client..11
4.1. Mounting remote directories...11
4.2. Getting NFS File Systems to Be Mounted at Boot Time...11
4.3. Mount options...12

4.3.1. Soft vs. Hard Mounting..12
4.3.2. Setting Block Size to Optimize Transfer Speeds..12

5. Optimizing NFS Performance...13
5.1. Setting Block Size to Optimize Transfer Speeds..13
5.2. Packet Size and Network Drivers...14
5.3. Number of Instances of NFSD..14
5.4. Memory Limits on the Input Queue..14
5.5. Overflow of Fragmented Packets..15
5.6. Turning Off Autonegotiation of NICs and Hubs..15
5.7. Non−NFS−Related Means of Enhancing Server Performance...15

6. Security and NFS..17
6.1. The portmapper...18
6.2. Server security: nfsd and mountd...19
6.3. Client Security..20

6.3.1. The nosuid mount option..20

Linux NFS−HOWTO

i

Table of Contents

6.3.2. The broken_suid mount option...20
6.3.3. Securing portmapper, rpc.statd, and rpc.lockd on the client...21

6.4. NFS and firewalls (ipchains and netfilter)..21
6.5. Summary...22

7. Troubleshooting..23
7.1. Unable to See Files on a Mounted File System..23
7.2. File requests hang or timeout waiting for access to the file..23
7.3. Unable to mount a file system..23
7.4. I do not have permission to access files on the mounted volume...25
7.5. When I transfer really big files, NFS takes over all the CPU cycles on the server and it screeches to a halt.6
7.6. Strange error or log messages...26
7.7. Real permissions don't match what's in /etc/exports...27
7.8. Flaky and unreliable behavior...27
7.9. nfsd won't start..27

8. Using Linux NFS with Other OSes..28
8.1. AIX ...28

8.1.1. Linux Clients and AIX Servers...28
8.1.2. AIX clients and Linux Servers..28

8.2. BSD...29
8.2.1. BSD servers and Linux clients..29
8.2.2. Linux servers and BSD clients..29

8.3. Compaq Tru64 Unix...29
8.3.1. Tru64 Unix Servers and Linux Clients...29
8.3.2. Linux Servers and Tru64 Unix Clients...29

8.4. HP−UX...29
8.4.1. HP−UX Servers and Linux Clients...29
8.4.2. Linux Servers and HP−UX Clients...30

8.5. IRIX..30
8.5.1. IRIX Servers and Linux Clients..30
8.5.2. IRIX clients and Linux servers...30

8.6. Solaris...30
8.6.1. Solaris Servers..30
8.6.2. Solaris Clients...31

8.7. SunOS...31
8.7.1. SunOS Servers..31
8.7.2. SunOS Clients...31

Linux NFS−HOWTO

ii

1. Preamble

1.1. Legal stuff

Copyright (c) <2001> by Tavis Barr, Nicolai Langfeldt, and Seth Vidal. This material may be distributed
only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest
version is presently available at http://www.opencontent.org/openpub/).

1.2. Disclaimer

This document is provided without any guarantees, including merchantability or fitness for a particular use.
The maintainers cannot be responsible if following instructions in this document leads to damaged equipment
or data, angry neighbors, strange habits, divorce, or any other calamity.

1.3. Feedback

This will never be a finished document; we welcome feedback about how it can be improved. As of October
2000, the Linux NFS home page is being hosted at http://nfs.sourceforge.net. Check there for mailing lists,
bug fixes, and updates, and also to verify who currently maintains this document.

1.4. Translation

If you are able to translate this document into another language, we would be grateful and we will also do our
best to assist you. Please notify the maintainers.

1.5. Dedication

NFS on Linux was made possible by a collaborative effort of many people, but a few stand out for special
recognition. The original version was developed by Olaf Kirch and Alan Cox. The version 3 server code was
solidified by Neil Brown, based on work from Saadia Khan, James Yarbrough, Allen Morris, H.J. Lu, and
others (including himself). The client code was written by Olaf Kirch and updated by Trond Myklebust. The
version 4 lock manager was developed by Saadia Khan. Dave Higgen and H.J. Lu both have undertaken the
thankless job of extensive maintenance and bug fixes to get the code to actually work the way it was
supposed to. H.J. has also done extensive development of the nfs−utils package. Of course this dedication is
leaving many people out.

The original version of this document was developed by Nicolai Langfeldt. It was heavily rewritten in 2000
by Tavis Barr and Seth Vidal to reflect substantial changes in the workings of NFS for Linux developed
between the 2.0 and 2.4 kernels. Thomas Emmel, Neil Brown, Trond Myklebust, Erez Zadok, and Ion
Badulescu also provided valuable comments and contributions.

1. Preamble 1

http://www.opencontent.org/openpub/
http://nfs.sourceforge.net

2. Introduction

2.1. What is NFS?

The Network File System (NFS) was developed to allow machines to mount a disk partition on a remote
machine as if it were on a local hard drive. This allows for fast, seamless sharing of files across a network.

It also gives the potential for unwanted people to access your hard drive over the network (and thereby
possibly read your email and delete all your files as well as break into your system) if you set it up
incorrectly. So please read the Security section of this document carefully if you intend to implement an NFS
setup.

There are other systems that provide similar functionality to NFS. Samba provides file services to Windows
clients. The Andrew File System from IBM (http://www.transarc.com/Product/EFS/AFS/index.html),
recently open−sourced, provides a file sharing mechanism with some additional security and performance
features. The Coda File System (http://www.coda.cs.cmu.edu/) is still in development as of this writing but is
designed to work well with disconnected clients. Many of the features of the Andrew and Coda file systems
are slated for inclusion in the next version of NFS (Version 4) (http://www.nfsv4.org). The advantage of NFS
today is that it is mature, standard, well understood, and supported robustly across a variety of platforms.

2.2. What is this HOWTO and what is it not?

This HOWTO is intended as a complete, step−by−step guide to setting up NFS correctly and effectively.
Setting up NFS involves two steps, namely configuring the server and then configuring the client. Each of
these steps is dealt with in order. The document then offers some tips for people with particular needs and
hardware setups, as well as security and troubleshooting advice.

This HOWTO is not a description of the guts and underlying structure of NFS. For that you may wish to read
Managing NFS and NIS by Hal Stern, published by O'Reilly & Associates, Inc. While that book is severely
out of date, much of the structure of NFS has not changed, and the book describes it very articulately. A
much more advanced and up−to−date technical description of NFS is available in NFS Illustrated by Brent
Callaghan.

This document is also not intended as a complete reference manual, and does not contain an exhaustive list of
the features of Linux NFS. For that, you can look at the man pages for nfs(5), exports(5), mount(8), fstab(5),
nfsd(8), lockd(8), statd(8), rquotad(8), and mountd(8).

It will also not cover PC−NFS, which is considered obsolete (users are encouraged to use Samba to share
files with PC's) or NFS Version 4, which is still in development.

2.3. Knowledge Pre−Requisites

You should know some basic things about TCP/IP networking before reading this HOWTO; if you are in
doubt, read the Networking− Overview−HOWTO.

2. Introduction 2

http://www.transarc.com/Product/EFS/AFS/index.html
http://www.coda.cs.cmu.edu/
http://www.nfsv4.org
http://www.linuxdoc.org/HOWTO/Networking-Overview-HOWTO.html
http://www.linuxdoc.org/HOWTO/Networking-Overview-HOWTO.html

2.4. Software Pre−Requisites: Kernel Version and nfs−utils

The difference between Version 2 NFS and version 3 NFS will be explained later on; for now, you might
simply take the suggestion that you will need NFS Version 3 if you are installing a dedicated or high−volume
file server. NFS Version 2 should be fine for casual use.

NFS Version 2 has been around for quite some time now (at least since the 1.2 kernel series) however you
will need a kernel version of at least 2.2.18 if you wish to do any of the following:

• Mix Linux NFS with other operating systems' NFS
• Use file locking reliably over NFS
• Use NFS Version 3.

There are also patches available for kernel versions above 2.2.14 that provide the above functionality. Some
of them can be downloaded from the Linux NFS homepage. If your kernel version is 2.2.14− 2.2.17 and you
have the source code on hand, you can tell if these patches have been added because NFS Version 3 server
support will be a configuration option. However, unless you have some particular reason to use an older
kernel, you should upgrade because many bugs have been fixed along the way.

Version 3 functionality will also require the nfs−utils package of at least version 0.1.6, and mount version
2.10m or newer. However because nfs−utils and mount are fully backwards compatible, and because newer
versions have lots of security and bug fixes, there is no good reason not to install the newest nfs−utils and
mount packages if you are beginning an NFS setup.

All 2.4 and higher kernels have full NFS Version 3 functionality.

All kernels after 2.2.18 support NFS over TCP on the client side. As of this writing, server−side NFS over
TCP only exists in the later 2.2 series (but not yet in the 2.4 kernels), is considered experimental, and is
somewhat buggy.

Because so many of the above functionalities were introduced in kernel version 2.2.18, this document was
written to be consistent with kernels above this version (including 2.4.x). If you have an older kernel, this
document may not describe your NFS system correctly.

As we write this document, NFS version 4 is still in development as a protocol, and it will not be dealt with
here.

2.5. Where to get help and further information

As of November 2000, the Linux NFS homepage is at http://nfs.sourceforge.net. Please check there for NFS
related mailing lists as well as the latest version of nfs−utils, NFS kernel patches, and other NFS related
packages.

You may also wish to look at the man pages for nfs(5), exports(5), mount(8), fstab(5), nfsd(8), lockd(8),
statd(8), rquotad(8), and mountd(8).

Linux NFS−HOWTO

2.4. Software Pre−Requisites: Kernel Version and nfs−utils 3

http://nfs.sourceforge.net

3. Setting Up an NFS Server

3.1. Introduction to the server setup

It is assumed that you will be setting up both a server and a client. If you are just setting up a client to work
off of somebody else's server (say in your department), you can skip to Section 4. However, every client that
is set up requires modifications on the server to authorize that client (unless the server setup is done in a very
insecure way), so even if you are not setting up a server you may wish to read this section to get an idea what
kinds of authorization problems to look out for.

Setting up the server will be done in two steps: Setting up the configuration files for NFS, and then starting
the NFS services.

3.2. Setting up the Configuration Files

There are three main configuration files you will need to edit to set up an NFS server: /etc/exports,
/etc/hosts.allow, and /etc/hosts.deny. Strictly speaking, you only need to edit
/etc/exports to get NFS to work, but you would be left with an extremely insecure setup. You may also
need to edit your startup scripts; see Section 3.3.3 for more on that.

3.2.1. /etc/exports

This file contains a list of entries; each entry indicates a volume that is shared and how it is shared. Check the
man pages (man exports) for a complete description of all the setup options for the file, although the
description here will probably satistfy most people's needs.

An entry in /etc/exports will typically look like this:

 directory machine1(option11,option12) machine2(option21,option22)

where

directory

the directory that you want to share. It may be an entire volume though it need not be. If you share a
directory, then all directories under it within the same file system will be shared as well.

machine1 and machine2

client machines that will have access to the directory. The machines may be listed by their IP address
or their DNS address (e.g., machine.company.com or 192.168.0.8). Using IP addresses is more
reliable and more secure.

optionxx

the option listing for each machine will describe what kind of access that machine will have.

3. Setting Up an NFS Server 4

Important options are:

♦ ro: The directory is shared read only; the client machine will not be able to write to it. This
is the default.

♦ rw: The client machine will have read and write access to the directory.
♦ no_root_squash: By default, any file request made by user root on the client machine is

treated as if it is made by user nobody on the server. (Excatly which UID the request is
mapped to depends on the UID of user "nobody" on the server, not the client.) If
no_root_squash is selected, then root on the client machine will have the same level of access
to the files on the system as root on the server. This can have serious security implications,
although it may be necessary if you want to perform any administrative work on the client
machine that involves the exported directories. You should not specify this option without a
good reason.

♦ no_subtree_check: If only part of a volume is exported, a routine called subtree
checking verifies that a file that is requested from the client is in the appropriate part of the
volume. If the entire volume is exported, disabling this check will speed up transfers.

♦ sync: By default, a Version 2 NFS server will tell a client machine that a file write is
complete when NFS has finished handing the write over to the filesysytem; however, the file
system may not sync it to the disk, even if the client makes a sync() call on the file system.
The default behavior may therefore cause file corruption if the server reboots. This option
forces the filesystem to sync to disk every time NFS completes a write operation. It slows
down write times substantially but may be necessary if you are running NFS Version 2 in a
production environment. Version 3 NFS has a commit operation that the client can call that
actually will result in a disk sync on the server end.

Suppose we have two client machines, slave1 and slave2, that have IP addresses 192.168.0.1 and
192.168.0.2, respectively. We wish to share our software binaries and home directories with these machines.
A typical setup for /etc/exports might look like this:

 /usr/local 192.168.0.1(ro) 192.168.0.2(ro)
 /home 192.168.0.1(rw) 192.168.0.2(rw)

Here we are sharing /usr/local read−only to slave1 and slave2, because it probably contains our
software and there may not be benefits to allowing slave1 and slave2 to write to it that outweigh security
concerns. On the other hand, home directories need to be exported read−write if users are to save work on
them.

If you have a large installation, you may find that you have a bunch of computers all on the same local
network that require access to your server. There are a few ways of simplifying references to large numbers
of machines. First, you can give access to a range of machines at once by specifying a network and a
netmask. For example, if you wanted to allow access to all the machines with IP addresses between
192.168.0.0 and 192.168.0.255 then you could have the entries:

 /usr/local 192.168.0.0/255.255.255.0(ro)
 /home 192.168.0.0/255.255.255.0(rw)

See the Networking−Overview HOWTO for further information about how netmasks work, and you may
also wish to look at the man pages for init and hosts.allow.

Second, you can use NIS netgroups in your entry. To specify a netgroup in your exports file, simply prepend

Linux NFS−HOWTO

3. Setting Up an NFS Server 5

http://www.linuxdoc.org/HOWTO/Networking-Overview-HOWTO.html

the name of the netgroup with an "@". See the NIS HOWTO for details on how netgroups work.

Third, you can use wildcards such as *.foo.com or 192.168. instead of hostnames.

However, you should keep in mind that any of these simplifications could cause a security risk if there are
machines in your netgroup or local network that you do not trust completely.

A few cautions are in order about what cannot (or should not) be exported. First, if a directory is exported, its
parent and child directories cannot be exported if they are in the same filesystem. However, exporting both
should not be necessary because listing the parent directory in the /etc/exports file will cause all
underlying directories within that file system to be exported.

Second, it is a poor idea to export a FAT or VFAT (i.e., MS−DOS or Windows 95/98) filesystem with NFS.
FAT is not designed for use on a multi−user machine, and as a result, operations that depend on permissions
will not work well. Moreover, some of the underlying filesystem design is reported to work poorly with
NFS's expectations.

Third, device or other special files may not export correctly to non−Linux clients. See Section 8 for details on
particular operating systems.

3.2.2. /etc/hosts.allow and /etc/hosts.deny

These two files specify which computers on the network can use services on your machine. Each line of the
file is an entry listing a service and a set of machines. When the server gets a request from a machine, it does
the following:

• It first checks hosts.allow to see if the machine matches a description listed in there. If it does,
then the machine is allowed access.

• If the machine does not match an entry in hosts.allow, the server then checks hosts.deny to
see if the client matches a listing in there. If it does then the machine is denied access.

• If the client matches no listings in either file, then it is allowed access.

In addition to controlling access to services handled by inetd (such as telnet and FTP), this file can also
control access to NFS by restricting connections to the daemons that provide NFS services. Restrictions are
done on a per−service basis.

The first daemon to restrict access to is the portmapper. This daemon essentially just tells requesting clients
how to find all the NFS services on the system. Restricting access to the portmapper is the best defense
against someone breaking into your system through NFS because completely unauthorized clients won't
know where to find the NFS daemons. However, there are two things to watch out for. First, restricting
portmapper isn't enough if the intruder already knows for some reason how to find those daemons. And
second, if you are running NIS, restricting portmapper will also restrict requests to NIS. That should usually
be harmless since you usually want to restrict NFS and NIS in a similar way, but just be cautioned. (Running
NIS is generally a good idea if you are running NFS, because the client machines need a way of knowing
who owns what files on the exported volumes. Of course there are other ways of doing this such as syncing
password files. See the NIS HOWTO for information on setting up NIS.)

In general it is a good idea with NFS (as with most internet services) to explicitly deny access to hosts that
you don't need to allow access to.

Linux NFS−HOWTO

3.2.2. /etc/hosts.allow and /etc/hosts.deny 6

http://www.linuxdoc.org/HOWTO/NIS-HOWTO.html
http://www.linuxdoc.org/HOWTO/NIS-HOWTO.html

The first step in doing this is to add the followng entry to /etc/hosts.deny:

 portmap:ALL

Starting with nfs−utils 0.2.0, you can be a bit more careful by controlling access to individual daemons. It's a
good precaution since an intruder will often be able to weasel around the portmapper. If you have a newer
version of NFS−utils, add entries for each of the NFS daemons (see the next section to find out what these
daemons are; for now just put entries for them in hosts.deny):

 lockd:ALL
 mountd:ALL
 rquotad:ALL
 statd:ALL

Even if you have an older version of nfs−utils, adding these entries is at worst harmless (since they will just
be ignored) and at best will save you some trouble when you upgrade. Some sys admins choose to put the
entry ALL:ALL in the file /etc/hosts.deny, which causes any service that looks at these files to deny
access to all hosts unless it is explicitly allowed. While this is more secure behavior, it may also get you in
trouble when you are installing new services, you forget you put it there, and you can't figure out for the life
of you why they won't work.

Next, we need to add an entry to hosts.allow to give any hosts access that we want to have access. (If we
just leave the above lines in hosts.deny then nobody will have access to NFS.) Entries in
hosts.allow follow the format

 service: host [or network/netmask] , host [or network/netmask]

Here, host is IP address of a potential client; it may be possible in some versions to use the DNS name of the
host, but it is strongly deprecated.

Suppose we have the setup above and we just want to allow access to slave1.foo.com and slave2.foo.com, and
suppose that the IP addresses of these machines are 192.168.0.1 and 192.168.0.2, respectively. We could add
the following entry to /etc/hosts.allow:

 portmap: 192.168.0.1 , 192.168.0.2

For recent nfs−utils versions, we would also add the following (again, these entries are harmless even if they
are not supported):

 lockd: 192.168.0.1 , 192.168.0.2
 rquotad: 192.168.0.1 , 192.168.0.2
 mountd: 192.168.0.1 , 192.168.0.2
 statd: 192.168.0.1 , 192.168.0.2

If you intend to run NFS on a large number of machines in a local network, /etc/hosts.allow also
allows for network/netmask style entries in the same manner as /etc/exports above.

Linux NFS−HOWTO

3.2.2. /etc/hosts.allow and /etc/hosts.deny 7

3.3. Getting the services started

3.3.1. Pre−requisites

The NFS server should now be configured and we can start it running. First, you will need to have the
appropriate packages installed. This consists mainly of a new enough kernel and a new enough version of the
nfs−utils package. See Section 2.4 if you are in doubt.

Next, before you can start NFS, you will need to have TCP/IP networking functioning correctly on your
machine. If you can use telnet, FTP, and so on, then chances are your TCP networking is fine.

That said, with most recent Linux distributions you may be able to get NFS up and running simply by
rebooting your machine, and the startup scripts should detect that you have set up your /etc/exports file
and will start up NFS correctly. If you try this, see Section 3.4 Verifying that NFS is running. If this does not
work, or if you are not in a position to reboot your machine, then the following section will tell you which
daemons need to be started in order to run NFS services. If for some reason nfsd was already running when
you edited your configuration files above, you will have to flush your configuration; see Section 3.5 for
details.

3.3.2. Starting the Portmapper

NFS depends on the portmapper daemon, either called portmap or rpc.portmap. It will need to be started
first. It should be located in /sbin but is sometimes in /usr/sbin. Most recent Linux distributions start
this daemon in the boot scripts, but it is worth making sure that it is running before you begin working with
NFS (just type ps aux | grep portmap).

3.3.3. The Daemons

NFS serving is taken care of by five daemons: rpc.nfsd, which does most of the work; rpc.lockd and rpc.statd,
which handle file locking; rpc.mountd, which handles the initial mount requests, and rpc.rquotad, which
handles user file quotas on exported volumes. Starting with 2.2.18, lockd is called by nfsd upon demand, so
you do not need to worry about starting it yourself. statd will need to be started separately. Most recent Linux
distributions will have startup scripts for these daemons.

The daemons are all part of the nfs−utils package, and may be either in the /sbin directory or the
/usr/sbin directory.

If your distribution does not include them in the startup scripts, then then you should add them, configured to
start in the following order:

rpc.portmap

rpc.mountd, rpc.nfsd

rpc.statd, rpc.lockd (if necessary), rpc.rquotad

The nfs−utils package has sample startup scripts for RedHat and Debian. If you are using a different
distribution, in general you can just copy the RedHat script, but you will probably have to take out the line
that says:

Linux NFS−HOWTO

3.3. Getting the services started 8

 . ../init.d/functions

to avoid getting error messages.

3.4. Verifying that NFS is running

To do this, query the portmapper with the command rpcinfo −p to find out what services it is providing. You
should get something like this:

 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100011 1 udp 749 rquotad
 100011 2 udp 749 rquotad
 100005 1 udp 759 mountd
 100005 1 tcp 761 mountd
 100005 2 udp 764 mountd
 100005 2 tcp 766 mountd
 100005 3 udp 769 mountd
 100005 3 tcp 771 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 300019 1 tcp 830 amd
 300019 1 udp 831 amd
 100024 1 udp 944 status
 100024 1 tcp 946 status
 100021 1 udp 1042 nlockmgr
 100021 3 udp 1042 nlockmgr
 100021 4 udp 1042 nlockmgr
 100021 1 tcp 1629 nlockmgr
 100021 3 tcp 1629 nlockmgr
 100021 4 tcp 1629 nlockmgr

This says that we have NFS versions 2 and 3, rpc.statd version 1, network lock manager (the service name for
rpc.lockd) versions 1, 3, and 4. There are also different service listings depending on whether NFS is
travelling over TCP or UDP. Linux systems use UDP by default unless TCP is explicitly requested; however
other OSes such as Solaris default to TCP.

If you do not at least see a line that says "portmapper", a line that says "nfs", and a line that says "mountd"
then you will need to backtrack and try again to start up the daemons (see Section 7, Troubleshooting, if this
still doesn't work).

If you do see these services listed, then you should be ready to set up NFS clients to access files from your
server.

3.5. Making changes to /etc/exports later on

If you come back and change your /etc/exports file, the changes you make may not take effect
immediately. You should run the command exportfs −ra to force nfsd to re−read the /etc/exports
file. If you can't find the exportfs command, then you can kill nfsd with the −HUP flag (see the man pages for

Linux NFS−HOWTO

3.4. Verifying that NFS is running 9

kill for details).

If that still doesn't work, don't forget to check hosts.allow to make sure you haven't forgotten to list any
new client machines there. Also check the host listings on any firewalls you may have set up (see Section
7 for more details on firewalls and NFS).

Linux NFS−HOWTO

3.4. Verifying that NFS is running 10

4. Setting up an NFS Client

4.1. Mounting remote directories

Before beginning, you should double−check to make sure your mount program is new enough (version 2.10m
if you want to use Version 3 NFS), and that the client machine supports NFS mounting, though most standard
distributions do. If you are using a 2.2 or later kernel with the /proc filesystem you can check the latter by
reading the file /proc/filesystems and making sure there is a line containing nfs. If not, you will need
to build (or download) a kernel that has NFS support built in.

To begin using machine as an NFS client, you will need the portmapper running on that machine, and to use
NFS file locking, you will also need rpc.statd and rpc.lockd running on both the client and the
server. Most recent distributions start those services by default at boot time; if yours doesn't, see Section
3.2 for information on how to start them up.

With portmapper, lockd, and statd running, you should now be able to mount the remote directory from your
server just the way you mount a local hard drive, with the mount command. Continuing our example from the
previous section, suppose our server above is called master.foo.com,and we want to mount the
/home directory on slave1.foo.com. Then, all we have to do, from the root prompt on slave1.foo.com, is
type:

 # mount master.foo.com:/home /mnt/home

and the directory /home on master will appear as the directory /mnt/home on slave1.

If this does not work, see the Troubleshooting section (Section 7).

You can get rid of the file system by typing

 # umount /mnt/home

just like you would for a local file system.

4.2. Getting NFS File Systems to Be Mounted at Boot Time

NFS file systems can be added to your /etc/fstab file the same way local file systems can, so that they
mount when your system starts up. The only difference is that the file system type will be set to nfs and the
dump and fsck order (the last two entries) will have to be set to zero. So for our example above, the entry in
/etc/fstab would look like:

 # device mountpoint fs−type options dump fsckorder
 ...
 master.foo.com:/home /mnt nfs rw 0 0
 ...

See the man pages for fstab if you are unfamiliar with the syntax of this file. If you are using an

4. Setting up an NFS Client 11

automounter such as amd or autofs, the options in the corresponding fields of your mount listings should look
very similar if not identical.

At this point you should have NFS working, though a few tweaks may still be necessary to get it to work
well. You should also read Section 6 to be sure your setup is reasonably secure.

4.3. Mount options

4.3.1. Soft vs. Hard Mounting

There are some options you should consider adding at once. They govern the way the NFS client handles a
server crash or network outage. One of the cool things about NFS is that it can handle this gracefully. If you
set up the clients right. There are two distinct failure modes:

soft

If a file request fails, the NFS client will report an error to the process on the client machine
requesting the file access. Some programs can handle this with composure, most won't. We do not
recommend using this setting; it is a recipe for corrupted files and lost data. You should especially
not use this for mail disks −−− if you value your mail, that is.

hard

The program accessing a file on a NFS mounted file system will hang when the server crashes. The
process cannot be interrupted or killed (except by a "sure kill") unless you also specify intr. When the
NFS server is back online the program will continue undisturbed from where it was. We recommend
using hard, intr on all NFS mounted file systems.

Picking up the from previous example, the fstab entry would now look like:

 # device mountpoint fs−type options dump fsckord
 ...
 master.foo.com:/home /mnt/home nfs rw,hard,intr 0 0
 ...

4.3.2. Setting Block Size to Optimize Transfer Speeds

The rsize and wsize mount options specify the size of the chunks of data that the client and server pass
back and forth to each other.

The defaults may be too big or to small; there is no size that works well on all or most setups. On the one
hand, some combinations of Linux kernels and network cards (largely on older machines) cannot handle
blocks that large. On the other hand, if they can handle larger blocks, a bigger size might be faster.

Getting the block size right is an important factor in performance and is a must if you are planning to use the
NFS server in a production environment. See Section 5 for details.

Linux NFS−HOWTO

4.3. Mount options 12

5. Optimizing NFS Performance
Getting network settings right can improve NFS performance many times over −− a tenfold increase in
transfer speeds is not unheard of. The most important things to get right are the rsize and
wsize mount options. Other factors listed below may affect people with particular hardware setups.

5.1. Setting Block Size to Optimize Transfer Speeds

The rsize and wsize mount options specify the size of the chunks of data that the client and server pass
back and forth to each other. If no rsize and wsize options are specified, the default varies by which
version of NFS we are using. 4096 bytes is the most common default, although for TCP−based mounts in 2.2
kernels, and for all mounts beginning with 2.4 kernels, the server specifies the default block size.

The defaults may be too big or too small. On the one hand, some combinations of Linux kernels and network
cards (largely on older machines) cannot handle blocks that large. On the other hand, if they can handle larger
blocks, a bigger size might be faster.

So we'll want to experiment and find an rsize and wsize that works and is as fast as possible. You can test the
speed of your options with some simple commands.

The first of these commands transfers 16384 blocks of 16k each from the special file /dev/zero (which if
you read it just spits out zeros _really_ fast) to the mounted partition. We will time it to see how long it takes.
So, from the client machine, type:

 # time dd if=/dev/zero of=/mnt/home/testfile bs=16k count=16384

This creates a 256Mb file of zeroed bytes. In general, you should create a file that's at least twice as large as
the system RAM on the server, but make sure you have enough disk space! Then read back the file into the
great black hole on the client machine (/dev/null) by typing the following:

 # time dd if=/mnt/home/testfile of=/dev/null bs=16k

Repeat this a few times and average how long it takes. Be sure to unmount and remount the filesystem each
time (both on the client and, if you are zealous, locally on the server as well), which should clear out any
caches.

Then unmount, and mount again with a larger and smaller block size. They should probably be multiples of
1024, and not larger than 8192 bytes since that's the maximum size in NFS version 2. (Though if you are
using Version 3 you might want to try up to 32768.) Wisdom has it that the block size should be a power of
two since most of the parameters that would constrain it (such as file system block sizes and network packet
size) are also powers of two. However, some users have reported better successes with block sizes that are
not powers of two but are still multiples of the file system block size and the network packet size.

Directly after mounting with a larger size, cd into the mounted file system and do things like ls, explore the fs
a bit to make sure everything is as it should. If the rsize/wsize is too large the symptoms are very odd and not
100% obvious. A typical symptom is incomplete file lists when doing 'ls', and no error messages. Or reading
files failing mysteriously with no error messages. After establishing that the given rsize/wsize works you can

5. Optimizing NFS Performance 13

do the speed tests again. Different server platforms are likely to have different optimal sizes. SunOS and
Solaris is reputedly a lot faster with 4096 byte blocks than with anything else.

Remember to edit /etc/fstab to reflect the rsize/wsize you found.

5.2. Packet Size and Network Drivers

There are many shoddy network drivers available for Linux, including for some fairly standard cards.

Try pinging back and forth between the two machines with large packets using the −f and −s options with
ping (see man ping) for more details and see if a lot of packets get or if they take a long time for a reply. If
so, you may have a problem with the performance of your network card.

To correct such a problem, you may wish to reconfigure the packet size that your network card uses. Very
often there is a constraint somewhere else in the network (such as a router) that causes a smaller maximum
packet size between two machines than what the network cards on the machines are actually capable of. TCP
should autodiscover the appropriate packet size for a network, but UDP will simply stay at a default value. So
determining the appropriate packet size is especially important if you are using NFS over UDP.

You can test for the network packet size using the tracepath command: From the client machine, just type
tracepath [server] 2049 and the path MTU should be reported at the bottom. You can then set the MTU on
your network card equal to the path MTU, by using the MTU option to ifconfig, and see if fewer packets get
dropped. See the ifconfig man pages for details on how to reset the MTU.

5.3. Number of Instances of NFSD

Most startup scripts, Linux and otherwise, start 8 instances of nfsd. In the early days of NFS, Sun decided on
this number as a rule of thumb, and everyone else copied. There are no good measures of how many instances
are optimal, but a more heavily−trafficked server may require more. If you are using a 2.4 or higher kernel
and you want to see how heavily each nfsd thread is being used, you can look at the file
/proc/net/rpc/nfsd. The last ten numbers on the th line in that file indicate the number of seconds that
the thread usage was at that percentage of the maximum allowable. If you have a large number in the top
three deciles, you may wish to increase the number of nfsd instances. This is done upon starting nfsd using
the number of instances as the command line option. See the nfsd man page for more information.

5.4. Memory Limits on the Input Queue

On 2.2 and 2.4 kernels, the socket input queue, where requests sit while they are currently being processed,
has a small default size limit of 64k. This means that if you are running 8 instances of nfsd, each will only
have 8k to store requests while it processes them.

You should consider increasing this number to at least 256k for nfsd. This limit is set in the proc file system
using the files /proc/sys/net/core/rmem_default and /proc/sys/net/core/rmem_max. It
can be increased in three steps; the following method is a bit of a hack but should work and should not cause
any problems:

Linux NFS−HOWTO

5.2. Packet Size and Network Drivers 14

a. Increase the size listed in the file:
 echo 262144 > /proc/sys/net/core/rmem_default
 echo 262144 > /proc/sys/net/core/rmem_max

b. Restart nfsd, e.g., type /etc/rc.d/init.d/nfsd restart on Red Hat
c. Return the size limits to their normal size in case other kernel systems depend on it:

 echo 65536 > /proc/sys/net/core/rmem_default
 echo 65536 > /proc/sys/net/core/rmem_max

Be sure to perform this last step because machines have been reported to crash if these values are
left changed for long periods of time.

5.5. Overflow of Fragmented Packets

The NFS protocol uses fragmented UDP packets. The kernel has a limit of how many fragments of
incomplete packets it can buffer before it starts throwing away packets. With 2.2 kernels that support the
/proc filesystem, you can specify how many by editing the files
/proc/sys/net/ipv4/ipfrag_high_thresh and
/proc/sys/net/ipv4/ipfrag_low_thresh.

Once the number of unprocessed, fragmented packets reaches the number specified by
ipfrag_high_thresh (in bytes), the kernel will simply start throwing away fragmented packets until the
number of incomplete packets reaches the number specified by ipfrag_low_thresh. (With 2.2 kernels,
the default is usually 256K). This will look like packet loss, and if the high threshold is reached your server
performance drops a lot.

One way to monitor this is to look at the field IP: ReasmFails in the file /proc/net/snmp; if it goes up
too quickly during heavy file activity, you may have problem. Good alternative values for
ipfrag_high_thresh and ipfrag_low_thresh have not been reported; if you have a good
experience with a particular value, please let the maintainers and development team know.

5.6. Turning Off Autonegotiation of NICs and Hubs

Sometimes network cards will auto−negotiate badly with hubs and switches and this can have strange effects.
Moreover, hubs may lose packets if they have different ports running at different speeds. Try playing around
with the network speed and duplex settings.

5.7. Non−NFS−Related Means of Enhancing Server
Performance

Offering general guidelines for setting up a well−functioning file server is outside the scope of this document,
but a few hints may be worth mentioning: First, RAID 5 gives you good read speeds but lousy write speeds;
consider RAID 1/0 if both write speed and redundancy are important. Second, using a journalling filesystem
will drastically reduce your reboot time in the event of a system crash; as of this writing, ext3
(ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/) was the only journalling filesystem that worked correctly with

Linux NFS−HOWTO

5.5. Overflow of Fragmented Packets 15

ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/

NFS version 3, but no doubt that will change soon. In particular, it looks like Reiserfs should work with NFS
version 3 on 2.4 kernels, though not yet on 2.2 kernels. Finally, using an automounter (such as autofs or amd)
may prevent hangs if you cross−mount files on your machines (whether on purpose or by oversight) and one
of those machines goes down. See the Automount Mini−HOWTO for details.

Linux NFS−HOWTO

5.5. Overflow of Fragmented Packets 16

http://www.namesys.com
http://www.linuxdoc.org/HOWTO/mini/Automount.html
http://www.linuxdoc.org/HOWTO/mini/Automount.html

6. Security and NFS
This list of security tips and explanations will not make your site completely secure. NOTHING will make
your site completely secure. This may help you get an idea of the security problems with NFS. This is not a
comprehensive guide and it will always be undergoing changes. If you have any tips or hints to give us please
send them to the HOWTO maintainer.

If you're on a network with no access to the outside world (not even a modem) and you trust all the internal
machines and all your users then this section will be of no use to you. However, its our belief that there are
relatively few networks in this situation so we would suggest reading this section thoroughly for anyone
setting up NFS.

There are two steps to file/mount access in NFS. The first step is mount access. Mount access is achieved by
the client machine attempting to attach to the server. The security for this is provided by the
/etc/exports file. This file lists the names or ip addresses for machines that are allowed to access a share
point. If the client's ip address matches one of the entries in the access list then it will be allowed to mount.
This is not terribly secure. If someone is capable of spoofing or taking over a trusted address then they can
access your mount points. To give a real−world example of this type of "authentication": This is equivalent to
someone introducing themselves to you and you believe they are who they claim to be because they are
wearing a sticker that says "Hello, My Name is"

The second step is file access. This is a function of normal file system access controls and not a specialized
function of NFS. Once the drive is mounted the user and group permissions on the files take over access
control.

An example: bob on the server maps to the UserID 9999. Bob makes a file on the server that is only
accessible the user (0600 in octal). A client is allowed to mount the drive where the file is stored. On the
client mary maps to UserID 9999. This means that the client user mary can access bob's file that is marked as
only accessible by him. It gets worse, if someone has root on the client machine they can su −
[username] and become ANY user. NFS will be none the wiser.

Its not all terrible. There are a few measures you can take on the server to offset the danger of the clients. We
will cover those shortly.

If you don't think the security measures apply to you, you're probably wrong. In Section 6.1 we'll cover
securing the portmapper, server and client security in Section 6.2 and Section 6.3 respectively. Finally, in
Section 6.4 we'll briefly talk about proper firewalling for your nfs server.

Finally, it is critical that all of your nfs daemons and client programs are current. If you think that a flaw is
too recently announced for it to be a problem for you, then you've probably already been compromised.

A good way to keep up to date on security alerts is to subscribe to the bugtraq mailinglists. You can read up
on how to subscribe and various other information about bugtraq here:
http://www.securityfocus.com/forums/bugtraq/faq.html

Additionally searching for NFS at securityfocus.com's search engine will show you all security reports
pertaining to NFS.

You should also regularly check CERT advisories. See the CERT web page at www.cert.org.

6. Security and NFS 17

http://www.securityfocus.com/forums/bugtraq/faq.html
http://www.securityfocus.com
http://www.cert.org

6.1. The portmapper

The portmapper keeps a list of what services are running on what ports. This list is used by a connecting
machine to see what ports it wants to talk to access certain services.

The portmapper is not in as bad a shape as a few years ago but it is still a point of worry for many sys admins.
The portmapper, like NFS and NIS, should not really have connections made to it outside of a trusted local
area network. If you have to expose them to the outside world − be careful and keep up diligent monitoring of
those systems.

Not all Linux distributions were created equal. Some seemingly up−to− date distributions do not include a
securable portmapper. The easy way to check if your portmapper is good or not is to run strings(1) and see if
it reads the relevant files, /etc/hosts.deny and /etc/hosts.allow. Assuming your portmapper is
/sbin/portmap you can check it with this command:

 strings /sbin/portmap | grep hosts.

On a securable machine it comes up something like this:

 /etc/hosts.allow
 /etc/hosts.deny
 @(#) hosts_ctl.c 1.4 94/12/28 17:42:27
 @(#) hosts_access.c 1.21 97/02/12 02:13:22

First we edit /etc/hosts.deny. It should contain the line

 portmap: ALL

which will deny access to everyone. While it is closed run:

 rpcinfo −p

just to check that your portmapper really reads and obeys this file. Rpcinfo should give no output, or possibly
an error message. The files /etc/hosts.allow and /etc/hosts.deny take effect immediately after
you save them. No daemon needs to be restarted.

Closing the portmapper for everyone is a bit drastic, so we open it again by editing /etc/hosts.allow.
But first we need to figure out what to put in it. It should basically list all machines that should have access to
your portmapper. On a run of the mill Linux system there are very few machines that need any access for any
reason. The portmapper administers nfsd, mountd, ypbind/ypserv, pcnfsd, and 'r' services like ruptime and
rusers. Of these only nfsd, mountd, ypbind/ypserv and perhaps pcnfsd are of any consequence. All
machines that need to access services on your machine should be allowed to do that. Let's say that your
machine's address is 192.168.0.254 and that it lives on the subnet 192.168.0.0, and that all machines on the
subnet should have access to it (those are terms introduced by the Networking−Overview−HOWTO, go back
and refresh your memory if you need to). Then we write:

 portmap: 192.168.0.0/255.255.255.0

Linux NFS−HOWTO

6.1. The portmapper 18

http://www.linuxdoc.org/HOWTO/Networking-Overview-HOWTO.html

in /etc/hosts.allow. This is the same as the network address you give to route and the subnet mask
you give to ifconfig. For the device eth0 on this machine ifconfig should show:

 ...
 eth0 Link encap:Ethernet HWaddr 00:60:8C:96:D5:56
 inet addr:192.168.0.254 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:360315 errors:0 dropped:0 overruns:0
 TX packets:179274 errors:0 dropped:0 overruns:0
 Interrupt:10 Base address:0x320
 ...

and netstat −rn should show:

 Kernel routing table
 Destination Gateway Genmask Flags Metric Ref Use Iface
 ...
 192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 174412 eth0
 ...

(Network address in first column).

The /etc/hosts.deny and /etc/hosts.allow files are described in the manual pages of the same
names.

IMPORTANT: Do not put anything but IP NUMBERS in the portmap lines of these files. Host name lookups
can indirectly cause portmap activity which will trigger host name lookups which can indirectly cause
portmap activity which will trigger...

Versions 0.2.0 and higher of the nfs−utils package also use the hosts.allow and hosts.deny files, so
you should put in entries for lockd, statd, mountd, and rquotad in these files too.

The above things should make your server tighter. The only remaining problem (Yeah, right!) is someone
breaking root (or boot MS−DOS) on a trusted machine and using that privilege to send requests from a secure
port as any user they want to be.

6.2. Server security: nfsd and mountd

On the server we can decide that we don't want to trust the client's root account. We can do that by using the
root_squash option in /etc/exports:

 /home slave1(rw,root_squash)

This is, in fact, the default. It should always be turned on unless you have a VERY good reason to turn it off.
To turn it off use the no_root_squash option.

Now, if a user with UID 0 (i.e., root's user ID number) on the client attempts to access (read, write, delete)
the file system, the server substitutes the UID of the server's 'nobody' account. Which means that the root user
on the client can't access or change files that only root on the server can access or change. That's good, and

Linux NFS−HOWTO

6.2. Server security: nfsd and mountd 19

you should probably use root_squash on all the file systems you export. "But the root user on the client
can still use su to become any other user and access and change that users files!" say you. To which the
answer is: Yes, and that's the way it is, and has to be with Unix and NFS. This has one important implication:
All important binaries and files should be owned by root, and not bin or other non−root account, since the
only account the clients root user cannot access is the servers root account. In the exports(5) man page there
are several other squash options listed so that you can decide to mistrust whomever you (don't) like on the
clients.

The TCP ports 1−1024 are reserved for root's use (and therefore sometimes referred to as "secure ports") A
non−root user cannot bind these ports. Adding the secure option to an /etc/exports entry forces it to run
on a port below 1024, so that a malicious non−root user cannot come along and open up a spoofed NFS
dialogue on a non−reserved port. This option is set by default.

6.3. Client Security

6.3.1. The nosuid mount option

On the client we can decide that we don't want to trust the server too much a couple of ways with options to
mount. For example we can forbid suid programs to work off the NFS file system with the nosuid option.
Some unix programs, such as passwd, are called "suid" programs: They set the id of the person running them
to whomever is the owner of the file. If a file is owned by root and is suid, then the program will execute as
root, so that they can perform operations (such as writing to the password file) that only root is allowed to do.
Using the nosuid option is a good idea and you should consider using this with all NFS mounted disks. It
means that the server's root user cannot make a suid−root program on the file system, log in to the client as a
normal user and then use the suid−root program to become root on the client too. One could also forbid
execution of files on the mounted file system altogether with the noexec option. But this is more likely to
be impractical than nosuid since a file system is likely to at least contain some scripts or programs that need
to be executed.

6.3.2. The broken_suid mount option

Some older programs (xterm being one of them) used to rely on the idea that root can write everywhere. This
is will break under new kernels on NFS mounts. The security implications are that programs that do this type
of suid action can potentially be used to change your apparent uid on nfs servers doing uid mapping. So the
default has been to disable this broken_suid in the linux kernel.

The long and short of it is this: If you're using an old linux distribution, some sort of old suid program or an
older unix of some type you might have to mount from your clients with the broken_suid option to
mount. However, most recent unixes and linux distros have xterm and such programs just as a normal
executable with no suid status, they call programs to do their setuid work.

You enter the above options in the options column, with the rsize and wsize, separated by commas.

Linux NFS−HOWTO

6.3. Client Security 20

6.3.3. Securing portmapper, rpc.statd, and rpc.lockd on the client

In the current (2.2.18+) implementation of nfs, full file locking is supported. This means that rpc.statd and
rpc.lockd must be running on the client in order for locks to function correctly. These services require the
portmapper to be running. So, most of the problems you will find with nfs on the server you may also be
plagued with on the client. Read through the portmapper section above for information on securing the
portmapper.

6.4. NFS and firewalls (ipchains and netfilter)

IPchains (under the 2.2.X kernels) and netfilter (under the 2.4.x kernels) allow a good level of security −
instead of relying on the daemon (or in this case the tcp wrapper) to determine who can connect, the
connection attempt is allowed or disallowed at a lower level. In this case you canstop the connection much
earlier and more globaly which can protect you from all sorts of attacks.

Describing how to set up a Linux firewall is well beyond the scope of this document. Interested readers may
wish to read the Firewall−HOWTO or the IPCHAINS−HOWTO. For users of kernel 2.4 and above you
might want to visit the netfilter webpage at: http://netfilter.filewatcher.org. If you are already familiar with
the workings of ipchains or netfilter this section will give you a few tips on how to better setup your firewall
to work with NFS.

A good rule to follow for your firewall configuration is to deny all, and allow only some − this helps to keep
you from accidentally allowing more than you intended.

Ports to be concerned with:

a. The portmapper is on 111. (tcp and udp)
b. nfsd is on 2049 and it can be TCP and UDP. Although NFS over TCP is currently experimental on

the server end and you will usually just see UDP on the server, using TCP is quite stable on the client
end.

c. mountd, lockd, and statd float around (which is why we need the portmapper to begin with) − this
causes problems. You basically have two options to deal with it:

i. You more can more or less do a deny all on connecting ports but explicitly allow most ports
certain ips.

ii. More recent versions of these utilities have a "−p" option that allows you to assign them to a
certain port. See the man pages to be sure if your version supports this. You can then allow
access to the ports you have specified for your NFS client machines, and seal off all other
ports, even for your local network.

Using IPCHAINS, a simply firewall using the first option would look something like this:

 ipchains −A input −f −j ACCEPT
 ipchains −A input −s trusted.net.here/trusted.netmask −d host.ip/255.255.255.255 −j ACCEPT
 ipchains −A input −s 0/0 −d 0/0 −p 6 −j DENY −y −l
 ipchains −A input −s 0/0 −d 0/0 −p 17 −j DENY −l

The equivalent set of commands in netfilter (the firewalling tool in 2.4) is:

Linux NFS−HOWTO

6.3.3. Securing portmapper, rpc.statd, and rpc.lockd on the client 21

http://www.linuxdoc.org/HOWTO/IPCHAINS-HOWTO.HTML
http://netfilter.filewatcher.org

 iptables −A INPUT −f −j ACCEPT
 iptables −A INPUT −s trusted.net.here/trusted.netmask −d \
 host.ip/255.255.255.255 −j ACCEPT
 iptables −A INPUT −s 0/0 −d 0/0 −p 6 −j DENY −−syn −−log−level 5
 iptables −A INPUT −s 0/0 −d 0/0 −p 17 −j DENY −−log−level 5

The first line says to accept all packet fragments (except the first packet fragment which will be treated as a
normal packet). In theory no packet will pass through until it is reassembled, and it won't be reassembled
unless the first packet fragment is passed. Of course there are attacks that can be generated by overloading a
machine with packet fragments. But NFS won't work correctly unless you let fragments through. See Section
7 for details.

The other three lines say trust your local networks and deny and log everything else. It's not great and more
specific rules pay off, but more specific rules are outside of the scope of this discussion.

Some pointers if you'd like to be more paranoid or strict about your rules. If you choose to reset your firewall
rules each time statd, rquotad, mountd or lockd move (which is possible) you'll want to make sure you
allow fragments to your nfs server FROM your nfs client(s). If you don't you will get some very interesting
reports from the kernel regarding packets being denied. The messages will say that a packet from port 65535
on the client to 65535 on the server is being denied. Allowing fragments will solve this.

6.5. Summary

If you use the hosts.allow, hosts.deny, root_squash, nosuid and privileged port features in the
portmapper/nfs software you avoid many of the presently known bugs in nfs and can almost feel secure about
that at least. But still, after all that: When an intruder has access to your network, s/he can make strange
commands appear in your .forward or read your mail when /home or /var/mail is NFS exported. For
the same reason, you should never access your PGP private key over nfs. Or at least you should know the risk
involved. And now you know a bit of it.

NFS and the portmapper makes up a complex subsystem and therefore it's not totally unlikely that new bugs
will be discovered, either in the basic design or the implementation we use. There might even be holes known
now, which someone is abusing. But that's life.

Linux NFS−HOWTO

6.5. Summary 22

7. Troubleshooting

This is intended as a step−by−step guide to what to do when things go wrong using NFS. Usually trouble first
rears its head on the client end, so this diagnostic will begin there.

7.1. Unable to See Files on a Mounted File System

First, check to see if the file system is actually mounted. There are several ways of doing this. The most
reliable way is to look at the file /proc/mounts, which will list all mounted filesystems and give details
about them. If this doesn't work (for example if you don't have the /proc filesystem compiled into your
kernel), you can type 'mount −f' although you get less information.

If the file system appears to be mounted, then you may have mounted another file system on top of it (in
which case you should unmount and remount both volumes), or you may have exported the file system on the
server before you mounted it there, in which case NFS is exporting the underlying mount point (if so then
you need to restart NFS on the server).

If the file system is not mounted, then attempt to mount it. If this does not work, see Symptom 3.

7.2. File requests hang or timeout waiting for access to the
file.

This usually means that the client is unable to communicate with the server. See Symptom 3 letter b.

7.3. Unable to mount a file system

There are two common errors that mount produces when it is unable to mount a volume. These are:

a. failed, reason given by server: Permission denied

This means that the server does not recognize that you have access to the volume.

i. Check your /etc/exports file and make sure that the volume is exported and that your
client has the right kind of access to it. For example, if a client only has read access then you
have to mount the volume with the ro option rather than the rw option.

ii. Make sure that you have told NFS to register any changes you made to
/etc/exports since starting nfsd by running the exportfs command. Be sure to type
exportfs −ra to be extra certain that the exports are being re−read.

iii. Check the file /proc/fs/nfs/exports and make sure the volume and client are listed
correctly. (You can also look at the file /var/lib/nfs/xtab for an unabridged list of
how all the active export options are set.) If they are not, then you have not re−exported
properly. If they are listed, make sure the server recognizes your client as being the machine
you think it is. For example, you may have an old listing for the client in /etc/hosts that

7. Troubleshooting 23

is throwing off the server, or you may not have listed the client's complete address and it may
be resolving to a machine in a different domain. Try to ping the client from the server, and
try to ping the server from the client. If this doesn't work, or if there is packet loss, you may
have lower−level network problems.

b. RPC: Program Not Registered (or another "RPC" error):

This means that the client does not detect NFS running on the server. This could be for several
reasons.

i. First, check that NFS actually is running on the server by typing rpcinfo −p on the server.
You should see something like this:
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100011 1 udp 749 rquotad
 100011 2 udp 749 rquotad
 100005 1 udp 759 mountd
 100005 1 tcp 761 mountd
 100005 2 udp 764 mountd
 100005 2 tcp 766 mountd
 100005 3 udp 769 mountd
 100005 3 tcp 771 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 300019 1 tcp 830 amd
 300019 1 udp 831 amd
 100024 1 udp 944 status
 100024 1 tcp 946 status
 100021 1 udp 1042 nlockmgr
 100021 3 udp 1042 nlockmgr
 100021 4 udp 1042 nlockmgr
 100021 1 tcp 1629 nlockmgr
 100021 3 tcp 1629 nlockmgr
 100021 4 tcp 1629 nlockmgr

This says that we have NFS versions 2 and 3, rpc.statd version 1, network lock manager (the
service name for rpc.lockd) versions 1, 3, and 4. There are also different service listings
depending on whether NFS is travelling over TCP or UDP. UDP is usually (but not always)
the default unless TCP is explicitly requested.

If you do not see at least portmapper, nfs, and mountd, then you need to restart NFS. If you
are not able to restart successfully, proceed to Symptom 9.

ii. Now check to make sure you can see it from the client. On the client, type rpcinfo −p
[server] where [server] is the DNS name or IP address of your server.

If you get a listing, then make sure that the type of mount you are trying to perform is
supported. For example, if you are trying to mount using Version 3 NFS, make sure Version
3 is listed; if you are trying to mount using NFS over TCP, make sure that is registered.
(Some non−Linux clients default to TCP). See man rpcinfo for more details on how to read
the output. If the type of mount you are trying to perform is not listed, try a different type of
mount.

If you get the error No Remote Programs Registered, then you need to check your
/etc/hosts.allow and /etc/hosts.deny files on the server and make sure your

Linux NFS−HOWTO

7. Troubleshooting 24

client actually is allowed access. Again, if the entries appear correct, check
/etc/hosts (or your DNS server) and make sure that the machine is listed correctly, and
make sure you can ping the server from the client. Also check the error logs on the system
for helpful messages: Authentication errors from bad /etc/hosts.allow entries will
usually appear in /var/log/messages, but may appear somewhere else depending on
how your system logs are set up. The man pages for syslog can help you figure out how your
logs are set up. Finally, some older operating systems may behave badly when routes
between the two machines are asymmetric. Try typing tracepath [server] from the client
and see if the word "asymmetric" shows up anywhere in the output. If it does then this may
be causing packet loss. However asymmetric routes are not usually a problem on recent linux
distributions.

If you get the error Remote system error − No route to host, but you can ping the server
correctly, then you are the victim of an overzealous firewall. Check any firewalls that may be
set up, either on the server or on any routers in between the client and the server. Look at the
man pages for ipchains, netfilter, and ipfwadm, as well as the IPChains−HOWTO and the
Firewall−HOWTO for help.

7.4. I do not have permission to access files on the
mounted volume.

This could be one of two problems.

If it is a write permission problem, check the export options on the server by looking at
/proc/fs/nfs/exports and make sure the filesystem is not exported read−only. If it is you will need to
re−export it read/write (don't forget to run exportfs −ra after editing /etc/exports). Also, check
/proc/mounts and make sure the volume is mounted read/write (although if it is mounted read−only you
ought to get a more specific error message). If not then you need to re−mount with the rw option.

The second problem has to do with username mappings, and is different depending on whether you are trying
to do this as root or as a non−root user.

If you are not root, then usernames may not be in sync on the client and the server. Type id [user] on both the
client and the server and make sure they give the same UID number. If they don't then you are having
problems with NIS, NIS+, rsync, or whatever system you use to sync usernames. Check group names to
make sure that they match as well. Also, make sure you are not exporting with the all_squash option. If
the user names match then the user has a more general permissions problem unrelated to NFS.

If you are root, then you are probably not exporting with the no_root_squash option; check
/proc/fs/nfs/exports or /var/lib/nfs/xtab on the server and make sure the option is listed. In
general, being able to write to the NFS server as root is a bad idea unless you have an urgent need −− which
is why Linux NFS prevents it by default. See Section 6 for details.

If you have root squashing, you want to keep it, and you're only trying to get root to have the same
permissions on the file that the user nobody should have, then remember that it is the server that determines
which uid root gets mapped to. By default, the server uses the UID and GID of nobody in the
/etc/passwd file, but this can also be overridden with the anonuid and anongid options in the
/etc/exports file. Make sure that the client and the server agree about which UID nobody gets mapped
to.

Linux NFS−HOWTO

7.4. I do not have permission to access files on the mounted volume. 25

http://www.linuxdoc.org/HOWTO/IPCHAINS-HOWTO.html
http://www.linuxdoc.org/HOWTO/Firewall-HOWTO.html

7.5. When I transfer really big files, NFS takes over all the
CPU cycles on the server and it screeches to a halt.

This is a problem with the fsync() function in 2.2 kernels that causes all sync−to−disk requests to be
cumulative, resulting in a write time that is quadratic in the file size. If you can, upgrading to a 2.4 kernel
should solve the problem. Also, exporting with the no_wdelay option forces the program to use
o_sync() instead, which may prove faster.

7.6. Strange error or log messages

a. Messages of the following format:

 Jan 7 09:15:29 server kernel: fh_verify: mail/guest permission failure, acc=4, error=13
 Jan 7 09:23:51 server kernel: fh_verify: ekonomi/test permission failure, acc=4, error=13

These happen when a NFS setattr operation is attempted on a file you don't have write access to. The
messages are harmless.

b. The following messages frequently appear in the logs:

 kernel: nfs: server server.domain.name not responding, still trying
 kernel: nfs: task 10754 can't get a request slot
 kernel: nfs: server server.domain.name OK

The "can't get a request slot" message means that the client− side RPC code has detected a lot of
timeouts (perhaps due to network congestion, perhaps due to an overloaded server), and is throttling
back the number of concurrent outstanding requests in an attempt to lighten the load. The cause of
these messages is basically sluggish performance. See Section 5 for details.

c. After mounting, the following message appears on the client:

nfs warning: mount version older than kernel

It means what it says: You should upgrade your mount package and/or am−utils. (If for some reason
upgrading is a problem, you may be able to get away with just recompiling them so that the newer
kernel features are recognized at compile time).

d. Errors in startup/shutdown log for lockd

You may see a message of the following kind in your boot log:

nfslock: rpc.lockd startup failed

They are harmless. Older versions of rpc.lockd needed to be started up manually, but newer versions

Linux NFS−HOWTO

7.5. When I transfer really big files, NFS takes over all the CPU cycles on the server and it screeches to a halt.26

are started automatically by knfsd. Many of the default startup scripts still try to start up lockd by
hand, in case it is necessary. You can alter your startup scripts if you want the messages to go away.

e. The following message appears in the logs:

kmem_create: forcing size word alignment − nfs_fh

This results from the file handle being 16 bits instead of a mulitple of 32 bits, which makes the kernel
grimace. It is harmless.

7.7. Real permissions don't match what's in /etc/exports.

/etc/exports is VERY sensitive to whitespace − so the following statements are not the same:

/export/dir hostname(rw,no_root_squash)
/export/dir hostname (rw,no_root_squash)

The first will grant hostname rw access to /export/dir without squashing root privileges. The second
will grant hostname rw privs w/root squash and it will grant EVERYONE else read−write access, without
squashing root privileges. Nice huh?

7.8. Flaky and unreliable behavior

Simple commands such as ls work, but anything that transfers a large amount of information causes the
mount point to lock.

This could be one of two problems:

i. It will happen if you have ipchains on at the server and/or the client and you are not allowing
fragmented packets through the chains. Allow fragments from the remote host and you'll be able to
function again. See Section 6.4 for details on how to do this.

ii. You may be using a larger rsize and wsize in your mount options than the server supports. Try
reducing rsize and wsize to 1024 and seeing if the problem goes away. If it does, then increase them
slowly to a more reasonable value.

7.9. nfsd won't start

Check the file /etc/exports and make sure root has read permission. Check the binaries and make sure
they are executable. Make sure your kernel was compiled with NFS server support. You may need to reinstall
your binaries if none of these ideas helps.

Linux NFS−HOWTO

7.7. Real permissions don't match what's in /etc/exports. 27

8. Using Linux NFS with Other OSes
Every operating system, Linux included, has quirks and deviations in the behavior of its NFS implementation
−− sometimes because the protocols are vague, sometimes because they leave gaping security holes. Linux
will work properly with all major vendors' NFS implementations, as far as we know. However, there may be
extra steps involved to make sure the two OSes are communicating clearly with one another. This section
details those steps.

In general, it is highly ill−advised to attempt to use a Linux machine with a kernel before 2.2.18 as an NFS
server for non−Linux clients. Implementations with older kernels may work fine as clients; however if you
are using one of these kernels and get stuck, the first piece of advice we would give is to upgrade your kernel
and see if the problems go away. The user−space NFS implementations also do not work well with
non−Linux clients.

Following is a list of known issues for using Linux together with major operating systems.

8.1. AIX

8.1.1. Linux Clients and AIX Servers

The format for the /etc/exports file for our example in Section 3 is:

 /usr slave1.foo.com:slave2.foo.com,access=slave1.foo.com:slave2.foo.com
 /home slave1.foo.com:slave2.foo.com,rw=slave1.foo.com:slave2.foo.com

8.1.2. AIX clients and Linux Servers

AIX uses the file /etc/filesystems instead of /etc/fstab. A sample entry, based on the example in
Section 4, looks like this:

/mnt/home:
 dev = "/home"
 vfs = nfs
 nodename = master.foo.com
 mount = true
 options = bg,hard,intr,rsize=1024,wsize=1024,vers=2,proto=udp
 account = false

i. Version 4.3.2 of AIX requires that file systems be exported with the insecure option, which causes
NFS to listen to requests from insecure ports (i.e., ports above 1024, to which non−root users can
bind). Older versions of AIX do not seem to require this.

ii. AIX clients will default to mounting version 3 NFS over TCP. If your Linux server does not support
this, then you may need to specify vers=2 and/or proto=udp in your mount options.

iii. Using netmasks in /etc/exports seems to sometimes cause clients to lose mounts when another
client is reset. This can be fixed by listing out hosts explicitly.

iv. Apparently automount in AIX 4.3.2 is rather broken.

8. Using Linux NFS with Other OSes 28

8.2. BSD

8.2.1. BSD servers and Linux clients

BSD kernels tend to work better with larger block sizes.

8.2.2. Linux servers and BSD clients

Some versions of BSD may make requests to the server from insecure ports, in which case you will need to
export your volumes with the insecure option. See the man page for exports(5) for more details.

8.3. Compaq Tru64 Unix

8.3.1. Tru64 Unix Servers and Linux Clients

In general, Tru64 Unix servers work quite smoothly with Linux clients. The format for the
/etc/exports file for our example in Section 3 is:

/usr slave1.foo.com:slave2.foo.com \
 −access=slave1.foo.com:slave2.foo.com \

/home slave1.foo.com:slave2.foo.com \
 −rw=slave1.foo.com:slave2.foo.com \
 −root=slave1.foo.com:slave2.foo.com

Tru64 checks the /etc/exports file every time there is a mount request so you do not need to run the
exportfs command; in fact on many versions of Tru64 Unix the command does not exist.

8.3.2. Linux Servers and Tru64 Unix Clients

There are two issues to watch out for here. First, Tru64 Unix mounts using Version 3 NFS by default. You
will see mount errors if your Linux server does not support Version 3 NFS. Second, in Tru64 Unix 4.x, NFS
locking requests are made by daemon. You will therefore need to specify the insecure_locks option on
all volumes you export to a Tru64 Unix 4.x client; see the exports man pages for details.

8.4. HP−UX

8.4.1. HP−UX Servers and Linux Clients

A sample /etc/exports entry on HP−UX looks like this:

Linux NFS−HOWTO

8.2. BSD 29

/usr −ro,access=slave1.foo.com:slave2.foo.com
/home −rw=slave1.foo.com:slave2.fo.com:root=slave1.foo.com:slave2.foo.com

(The root option is listed in the last entry for informational purposes only; its use is not recommended
unless necessary.)

8.4.2. Linux Servers and HP−UX Clients

HP−UX diskless clients will require at least a kernel version 2.2.19 (or patched 2.2.18) for device files to
export correctly.

8.5. IRIX

8.5.1. IRIX Servers and Linux Clients

A sample /etc/exports entry on IRIX looks like this:

/usr −ro,access=slave1.foo.com:slave2.foo.com
/home −rw=slave1.foo.com:slave2.fo.com:root=slave1.foo.com:slave2.foo.com

(The root option is listed in the last entry for informational purposes only; its use is not recommended
unless necessary.)

There are reportedly problems when using the nohide option on exports to linux 2.2−based systems. This
problem is fixed in the 2.4 kernel. As a workaround, you can export and mount lower−down file systems
separately.

8.5.2. IRIX clients and Linux servers

There are no known interoperability issues.

8.6. Solaris

8.6.1. Solaris Servers

Solaris has a slightly different format on the server end from other operating systems. Instead of
/etc/exports, the configuration file is /etc/dfs/dfstab. Entries are of the form of a "share"
command, where the syntax for the example in Section 3 would look like

share −o rw=slave1,slave2 −d "Master Usr" /usr

and instead of running exportfs after editing, you run shareall.

Linux NFS−HOWTO

8.4.2. Linux Servers and HP−UX Clients 30

Solaris servers are especially sensitive to packet size. If you are using a Linux client with a Solaris server, be
sure to set rsize and wsize to 32768 at mount time.

Finally, there is an issue with root squashing on Solaris: root gets mapped to the user noone, which is not the
same as the user nobody. If you are having trouble with file permissions as root on the client machine, be sure
to check that the mapping works as you expect.

8.6.2. Solaris Clients

Solaris clients will regularly produce the following message:

svc: unknown program 100227 (me 100003)

This happens because Solaris clients, when they mount, try to obtain ACL information − which linux
obviously does not have. The messages can safely be ignored.

There are two known issues with diskless Solaris clients: First, a kernel version of at least 2.2.19 is needed to
get /dev/null to export correctly. Second, the packet size may need to be set extremely small (i.e., 1024)
on diskless sparc clients because the clients do not know how to assemble packets in reverse order. This can
be done from /etc/bootparams on the clients.

8.7. SunOS

SunOS only has NFS Version 2 over UDP.

8.7.1. SunOS Servers

On the server end, SunOS uses the most traditional format for its /etc/exports file. The example in
Section 3 would look like:

/usr −access=slave1.foo.com,slave2.foo.com
/home −rw=slave1.foo.com,slave2.foo.com, root=slave1.foo.com,slave2.foo.com

8.7.2. SunOS Clients

Be advised that SunOS makes all NFS locking requests as daemon, and therefore you will need to add the
insecure_locks option to any volumes you export to a SunOS machine. See the exports man page for
details.

Linux NFS−HOWTO

8.6.2. Solaris Clients 31

	Table of Contents
	1. Preamble
	1.1. Legal stuff
	1.2. Disclaimer
	1.3. Feedback
	1.4. Translation
	1.5. Dedication

	2. Introduction
	2.1. What is NFS?
	2.2. What is this HOWTO and what is it not?
	2.3. Knowledge Pre-Requisites
	2.4. Software Pre-Requisites: Kernel Version and nfs-utils
	2.5. Where to get help and further information

	3. Setting Up an NFS Server
	3.1. Introduction to the server setup
	3.2. Setting up the Configuration Files
	3.2.1. /etc/exports
	3.2.2. /etc/hosts.allow and /etc/hosts.deny

	3.3. Getting the services started
	3.3.1. Pre-requisites
	3.3.2. Starting the Portmapper
	3.3.3. The Daemons

	3.4. Verifying that NFS is running
	3.5. Making changes to /etc/exports later on

	4. Setting up an NFS Client
	4.1. Mounting remote directories
	4.2. Getting NFS File Systems to Be Mounted at Boot Time
	4.3. Mount options
	4.3.1. Soft vs. Hard Mounting
	4.3.2. Setting Block Size to Optimize Transfer Speeds

	5. Optimizing NFS Performance
	5.1. Setting Block Size to Optimize Transfer Speeds
	5.2. Packet Size and Network Drivers
	5.3. Number of Instances of NFSD
	5.4. Memory Limits on the Input Queue
	5.5. Overflow of Fragmented Packets
	5.6. Turning Off Autonegotiation of NICs and Hubs
	5.7. Non-NFS-Related Means of Enhancing Server Performance

	6. Security and NFS
	6.1. The portmapper
	6.2. Server security: nfsd and mountd
	6.3. Client Security
	6.3.1. The nosuid mount option
	6.3.2. The broken_suid mount option
	6.3.3. Securing portmapper, rpc.statd, and rpc.lockd on the client

	6.4. NFS and firewalls (ipchains and netfilter)
	6.5. Summary

	7. Troubleshooting
	7.1. Unable to See Files on a Mounted File System
	7.2. File requests hang or timeout waiting for access to the file.
	7.3. Unable to mount a file system
	7.4. I do not have permission to access files on the mounted volume.
	7.5. When I transfer really big files, NFS takes over all the CPU cycles on the server and it screeches to a halt.
	7.6. Strange error or log messages
	7.7. Real permissions don't match what's in /etc/exports.
	7.8. Flaky and unreliable behavior
	7.9. nfsd won't start

	8. Using Linux NFS with Other OSes
	8.1. AIX
	8.1.1. Linux Clients and AIX Servers
	8.1.2. AIX clients and Linux Servers

	8.2. BSD
	8.2.1. BSD servers and Linux clients
	8.2.2. Linux servers and BSD clients

	8.3. Compaq Tru64 Unix
	8.3.1. Tru64 Unix Servers and Linux Clients
	8.3.2. Linux Servers and Tru64 Unix Clients

	8.4. HP-UX
	8.4.1. HP-UX Servers and Linux Clients
	8.4.2. Linux Servers and HP-UX Clients

	8.5. IRIX
	8.5.1. IRIX Servers and Linux Clients
	8.5.2. IRIX clients and Linux servers

	8.6. Solaris
	8.6.1. Solaris Servers
	8.6.2. Solaris Clients

	8.7. SunOS
	8.7.1. SunOS Servers
	8.7.2. SunOS Clients

