
 C++ Programming HOW−TO

Table of Contents
C++ Programming HOW−TO...1

Al Dev (Alavoor Vasudevan) alavoor[AT]yahoo.com...1
1. Introduction..1
2. Recommended C++ Compilers ...1
3. String Class Varieties ..1
4. Download String ...1
5. Usage of String class..1
6. String.h file..2
7. The Standard C++ Library string class ...2
8. File Class..2
9. Memory Allocation in C++ ...2
10. Pointers are problems ..2
11. Debugging..2
12. IDE's and editors for C++ ...2
13. C++ Online Textbooks and Docs ..2
14. C++ Coding Conventions..2
15. C++ Scripting Languages..2
16. Templates...3
17. STL References ...3
18. Threads in C++..3
19. C++ Utilities..3
20. Other Formats of this Document..3
21. Translations To Other Languages..3
22. Copyright...3
23. Appendix A String Program Files ..3
1. Introduction..3
1.1 Program in C++ ? C++ vs. Java/PHP..4
1.2 Which one Ada95, C, C++, Java or PHP?...5
1.3 Problems facing the current C++ compilers..6
 2. Recommended C++ Compilers ..7
2.1 Compilers for MS Windows 2000/NT/95/98/ME/XP...7
2.2 Compilers for UNIX systems and clones...7
 3. String Class Varieties ...7
3.1 Multiple Inheritance − Sample Custom String class ..8
 4. Download String ..9
 4.1 How Can I trust Al Dev's String Class? ...9
5. Usage of String class..9
5.1 Operators..10
5.2 Functions..11
5.3 Renaming the String class..11

Case 1: Simple rename...11
Case 2: Resolve conflict...12

6. String.h file..12
6.1 StringBuffer.h..18
6.2 StringTokenizer.h...19
 7. The Standard C++ Library string class ..20
7.1 string by example...21
7.2 Searching a string...21

 C++ Programming HOW−TO

i

Table of Contents
7.3 A string tokenizer...22
8. File Class..24
 9. Memory Allocation in C++ ..24
 9.1 C++ Zap (Delete) function ...24
 9.2 Usage of my_malloc and my_free ...26
 9.3 Garbage Collector for C++ ..27
 10. Pointers are problems ...27
11. Debugging..28
11.1 Debug files...29
 12. IDE's and editors for C++ ..29
12.1 IDE's...29
12.2 Editors..30
12.3 Other ressources...30
 13. C++ Online Textbooks and Docs ...30
13.1 C++ Sites..31
13.2 C++ Tutorials...32
13.3 Useful links..32
13.4 C++ Quick−Reference...32
13.5 C++ Usenet Newsgroups...32
13.6 Java like API..32
14. C++ Coding Conventions..33
15. C++ Scripting Languages..34
15.1 PIKE & PHP (C/C++ Scripting Languages)..34
15.2 SoftIntegration Ch (C/C++ Scripting Language)...35
15.3 PHP (C++ Scripting Language)...35
16. Templates...35
 17. STL References ..36
17.1 Overview of the STL ..37
17.2 Header Files...38
17.3 The Container Classes Interface ...38
17.4 Vectors ..39

Constructing Vectors ...39
Checking Up on Your Vector ..40
Accessing Elements of a Vector ..41
Inserting and Erasing Vector Elements ...42
Vector Iterators ..43
Comparing Vectors ..45

17.5 Iterators and the STL...45
17.6 Lists..46
17.7 Sets ..46

Constructing Sets..46
What are Function Objects?..47
A Printing Utility..49
How Many Elements?...50
Checking the Equality of Sets...51
Adding and Deleting Elements...51
Finding Elements..53
Set Theoretic Operations..54

 C++ Programming HOW−TO

ii

Table of Contents
17.8 Maps...56
17.9 STL Algorithms...56
18. Threads in C++..56
18.1 Threads Tutorial...57
18.2 Designing a Thread Class in C++..57

Introduction...57
Brief Introduction To Threads..57
Basic Approach...58
The Implementation..58
Using The Thread Class..59
Conclusion..59

19. C++ Utilities..60
19.1 Memory Tools..60
20. Other Formats of this Document..61
 20.1 Acrobat PDF format ...62
 20.2 Convert linuxdoc to Docbook format ..62
 20.3 Convert to MS WinHelp format ..63
 20.4 Reading various formats ..63
21. Translations To Other Languages..63
22. Copyright...64
 23. Appendix A String Program Files ...64

 C++ Programming HOW−TO

iii

C++ Programming HOW−TO

Al Dev (Alavoor Vasudevan) alavoor[AT]yahoo.com

v42.0, 02 April 2002

This document provides a comprehensive list of C++ URL pointers, links to C++ online textbooks, and
programming tips on C++. This document also provides a C++ library which imitates Java−language, and
which has various methods to avoid memory problems in C++. Using this library you can compile Java's
source code under C++. This document serves as a "Home of C++ language". The information given here
will help you to program properly in C++ language and applies to all the operating systems that is − Linux,
MS DOS, BeOS, Apple Macintosh OS, Microsoft Windows 95/98/NT/2000, OS/2, IBM OSes (MVS, AS/400
etc..), VAX VMS, Novell Netware, all flavors of Unix like Solaris, HPUX, AIX, SCO, Sinix, BSD, etc.. and to
all other operating systems which supplies C++ compilers (it means almost all the operating systems on this
planet).

1. Introduction

1.1 Program in C++ ? C++ vs. Java/PHP•
1.2 Which one Ada95, C, C++, Java or PHP?•
1.3 Problems facing the current C++ compilers•

2. Recommended C++ Compilers

2.1 Compilers for MS Windows 2000/NT/95/98/ME/XP•
2.2 Compilers for UNIX systems and clones•

3. String Class Varieties

3.1 Multiple Inheritance − Sample Custom String class •

4. Download String

4.1 How Can I trust Al Dev's String Class? •

5. Usage of String class

5.1 Operators•
5.2 Functions•
5.3 Renaming the String class•

C++ Programming HOW−TO 1

mailto:alavoor[AT]yahoo.com

6. String.h file

6.1 StringBuffer.h•
6.2 StringTokenizer.h•

7. The Standard C++ Library string class

7.1 string by example•
7.2 Searching a string•
7.3 A string tokenizer•

8. File Class

9. Memory Allocation in C++

9.1 C++ Zap (Delete) function •
9.2 Usage of my_malloc and my_free •
9.3 Garbage Collector for C++ •

10. Pointers are problems

11. Debugging

11.1 Debug files•

12. IDE's and editors for C++

12.1 IDE's•
12.2 Editors•
12.3 Other ressources•

13. C++ Online Textbooks and Docs

13.1 C++ Sites•
13.2 C++ Tutorials•
13.3 Useful links•
13.4 C++ Quick−Reference•
13.5 C++ Usenet Newsgroups•
13.6 Java like API•

14. C++ Coding Conventions

15. C++ Scripting Languages

15.1 PIKE & PHP (C/C++ Scripting Languages)•

 C++ Programming HOW−TO

6. String.h file 2

15.2 SoftIntegration Ch (C/C++ Scripting Language)•
15.3 PHP (C++ Scripting Language)•

16. Templates

17. STL References

17.1 Overview of the STL •
17.2 Header Files•
17.3 The Container Classes Interface •
17.4 Vectors •
17.5 Iterators and the STL•
17.6 Lists•
17.7 Sets •
17.8 Maps•
17.9 STL Algorithms•

18. Threads in C++

18.1 Threads Tutorial•
18.2 Designing a Thread Class in C++•

19. C++ Utilities

19.1 Memory Tools•

20. Other Formats of this Document

20.1 Acrobat PDF format •
20.2 Convert linuxdoc to Docbook format •
20.3 Convert to MS WinHelp format •
20.4 Reading various formats •

21. Translations To Other Languages

22. Copyright

23. Appendix A String Program Files

1. Introduction

(The latest version of this document is at http://www.milkywaygalaxy.freeservers.com. You may want
to check there for changes).

 C++ Programming HOW−TO

16. Templates 3

http://www.milkywaygalaxy.freeservers.com

The purpose of this document is to provide you with a comprehensive list of URL pointers and programming
tips on C++. Also, this document provides a Java−like String class, string tokenizer, memory functions and
many other functions, which can be used in general C++ applications. C++ and Java is often used
concurrently in many software projects. Programmers jump back and forth between C++ and Java will find
this Java−like classes very helpful. Various examples are given which demonstrate the usage of this library
and the Standard C++ Library.

This document is not a textbook on C++, and there are already several excellent on−line text books on the
internet. Since C++ is being used for a long time there are very large number of C++
documents/articles/tutorials on Internet. If you are new to C++ and you never programmed in C++, then it is
strongly suggested that you first either read an online C++ textbook given in chapter C++ Online
Textbooks or you buy a C++ book from online bookstores such as Amazon or barnes.

As someone said − Leave the C/C++ programming to system engineers who write operating system, device
drivers and fast response real−time programming, you should use Java/PHP−scripting as speed of the
computers in year 2005 will be several billion times faster than computers of year 2002!! Hardware is getting
cheaper and faster.

1.1 Program in C++ ? C++ vs. Java/PHP

C++ is one of the most powerful languages and will be used for a long time in the future in spite of
emergence of Java or PHP−scripting. Programs which need real−time ultra fast response use C/C++. C++
runs extremely fast and is in fact 10 to 20 times FASTER than Java. Java is the "offspring" of C++. The
only complaint against Java is − "Java is GOD DAMN SLOW" . Java byte−code is slower when running in a
VM than the equivalent natively compiled code. Java runs faster with JIT (Just−In−Time) compiler, but it is
still slower than C++. And optimized C/C++ program is about 3 to 4 times faster than Java compiled to
native code with JIT compiler or ahead−of−time compiler!! Then, why do people use Java? Because it is pure
object oriented and is easier to program in Java, as Java automates memory management, and programmers
do not directly deal with memory allocations. This document attempts to automate the memory management
in C++ to make it much more easy to use. The library given here will make C++ look like Java and will
enable C++ to compete with the Java language.

Because of manual memory allocations, debugging the C++ programs consumes a major portion of time.
This document will give you some better ideas and tips to reduce the debugging time.

When should you use C++ and when you should use Java/PHP?

Bottom line is, you use C++:

If you are developing a program where speed and performance is very important.•
If the user base of your application or program is very large. Since C++ involves
compile−link−debug cycle it is more time consuming to develop application in C++. You can justify
the cost only if the user base of your program is large enough. Linking large number of object files to
create an executable takes time. (You can use archives, libraries or shared libraries to reduce linking
time).

•

If you have lot of experience programming in C++.•
Use Java/PHP:

If speed and performance is not important (relative to C/C++).•
Lower cost of development − There is no compile−link cycle, Java/PHP development is faster than
C++.

•

 C++ Programming HOW−TO

1.1 Program in C++ ? C++ vs. Java/PHP 4

http://www.amazon.com
http://www.barnesnoble.com

Need rapid development.•
You want no code maintenance nightmare. Maintaining C++ is more difficult than Java or
PHP−scripting.

•

Java and PHP−scripting is the future, hardware speed will be zooming with the introduction of
molecular, atomic and sub−atomic scale computers. Future computers will be several trillion times
faster than today's computer. Runtime performance of Java or PHP−script becomes less important as
speed of hardware zooms in future. The computers you are using today (as of year 2002) are
extremely slow and crawling and are not fast enough.

•

NOTE: There are lot of improvements in Java compilers (JIT and ahead−of−time). Java programs can be
compiled with GNU GCJ http://gcc.gnu.org/java, GCJ is a portable, optimizing, ahead−of−time compiler for
the Java programming language. It can compile − Java source code directly to native machine code, Java
source code to Java bytecode (class files), and Java bytecode to native machine code.

GCJ resources:

Main site GNU GCJ http://gcc.gnu.org/java,•
Redhat rpm GNU GCJ http://www.redhat.com/apps/download. Go here and under the section "Find
latest RPMs" search by keyword 'gcc−java' and 'libgcj'.

•

Redhat GCJ Installtion instructions http://www.redhat.com/devnet/articles/gcj.pdf•

1.2 Which one Ada95, C, C++, Java or PHP?

Language choice is very difficult. There are too many parameters − people, people skills, cost, tools, politics
(even national politics) and influence of businessmen/commercial companies. The best language based on
technical merits does not get selected simply due to political decisions!

See the language comparison chart of David Wheeler at Ada comparison chart. Ada got 93%, Java 72%, C++
68% and C got 53%. C++ and Java are closer in points (only 4% difference). Development costs of Ada is
half of C++ as per Stephen F. Zeigler. Ada95 is available at −

Ada home http://www.gnuada.org.•
Google Ada index•

The C++ compiler is lot more complex than a C compiler and C++ programs may run bit slower than C
programs. The C compiler is very mature and seasoned.

On some system, you can use compiler options, to optimize the code generated.

Nowadays, C is primarily used for low level systems programming to develop operating systems, device
drivers and applications which must perform fast.

Note: Using the String, StringBuffer, StringTokenizer and StringReader classes given in this howto, you
can code in C++ which "exactly" looks like Java. Parts of this document tries to close the gap between
C++ and Java, by imitating Java classes in C++. Java programmers who jump to and fro from C++ to
Java will like this String class.

If you want to bypass the edit−compile−debug−compile cycle of C++ then see scripting languages like PHP
which can be used for web development and for general purpose programming. Scripting languages like PHP,
PERL enable rapid application development. PHP has some features of object−oriented programming. PHP is

 C++ Programming HOW−TO

1.2 Which one Ada95, C, C++, Java or PHP? 5

http://gcc.gnu.org/java
http://gcc.gnu.org/java
http://www.redhat.com/apps/download
http://www.redhat.com/devnet/articles/gcj.pdf
http://www.adahome.com/History/Steelman/steeltab.htm
http://sw-eng.falls-church.va.us/AdaIC/docs/reports/cada/cada_art.html
http://www.gnuada.org
http://directory.google.com/Top/Computers/Programming/Languages/Ada

at http://www.linuxdoc.org/HOWTO/PHP−HOWTO.html.

1.3 Problems facing the current C++ compilers

Since C++ is super−set of C, it has all the "bad" features of C. Manual allocation and deallocation of memory
is tedious and error prone (see Garbage Collector for C++).

In C programming − memory leaks, memory overflows are very common due to usage of features like −

 Datatype char * and char[]
 String functions like strcpy, strcat, strncpy, strncat, etc..
 Memory functions like malloc, realloc, strdup, etc..

The usage of char * and strcpy causes horrible memory problems due to "overflow", "fence past errors",
"memory corruption", "step−on−others−toe" (hurting other variable's memory locations) or "memory leaks".
The memory problems are extremely hard to debug and are very time consuming to fix and trouble−shoot.
Memory problems bring down the productivity of programmers. This document helps in increasing the
productivity of programmers via different methods addressed to solve the memory defects in C++. Memory
related bugs are very tough to crack, and even experienced programmers take several days or weeks to debug
memory related problems. Memory bugs may be hide inside the code for several months and can cause
unexpected program crashes. The memory bugs due to usage of char * and pointers in C/C++ is costing $2
billion every year in time lost due to debugging and downtime of programs. If you use char * and pointers in
C++ then it is a very costly affair, especially if your program size is greater than 10,000 lines of code.

Hence, the following techniques are proposed to overcome the faults of C. Give preference in the following
order −

Use references instead of pointers.1.
Java style String class (given in this HOWTO) or the string class from the Standard C++ Library.2.
Character pointers (char *) in C++ limit the usage of char * to cases where you cannot use the String
class.

3.

Character pointers (char *) in C using extern linkage specification, if you do not want to use (char *)
in C++.

4.

To use "C char *", you would put all your C programs in a separate file and link to C++ programs using the
linkage−specification statement extern "C" −

extern "C" {
#include <some_c_header.h>
}

extern "C" {
 comp();
 some_c_function();
}

The extern "C" is a linkage specification and is a flag that everything within the enclosing block
(brace−surrounded) uses C linkage, not C++ linkage.

 C++ Programming HOW−TO

1.3 Problems facing the current C++ compilers 6

http://www.linuxdoc.org/HOWTO/PHP-HOWTO.html

The 'String class' utilizes the constructor and destructor features to automate memory management and
provides access to functions like ltrim, substring, etc..

See also related string class in your C++ compiler. The string class is part of the Standard C++ Library
library and provides many string manipulation functions.

Because the C++ 'string class' and 'String class' library provides many string manipulation functions, there
is less need to use the character pointer approach to write your own string functions. Also, C++ programmers
must be encouraged to use 'new', 'delete' operators instead of using 'malloc' or 'free'.

Both string classes does everything that char * or char [] does. One of the added benefits is that you do not
have to worry about the memory problems and memory allocation at all.

2. Recommended C++ Compilers

The current C++ standard adopted by ISO and ANSI was first finalized in 1997, this means that not all
compilers are up to pace yet, and not supporting all features − it is extremely important that you get a
standard compliant C++ compiler.

2.1 Compilers for MS Windows 2000/NT/95/98/ME/XP

Since MS Windows is quite popular for C++ development, the String class library given in this document
works well and runs very well on all the versions of MS Windows i.e. MS Win XP/2000/NT/95/98/ME. The
C++ compilers for MS Windows are:

GNU BloodShed at http://www.bloodshed.net/devcpp.html•
Borland C++ compiler http://www.borland.com/bcppbuilder/freecompiler•
Microsoft Visual C++ compiler http://msdn.microsoft.com/visualc•
MSDOS C++ compiler http://www.delorie.com/djgpp•

The String class in this document is tested with all the above compilers. It works fine with MS Visual C++
compiler v6.0, Borland C++ v5.2, Borland C++ compiler v5.5.1 and Bloodshed compiler.

2.2 Compilers for UNIX systems and clones

In a GNU world, you will always be best off with GCC (GNU Compiler Collection), GCC is distributed with
most Linux distributions, FreeBSD and most other UNIX clones. The GCC homepage is located at
http://gcc.gnu.org. The latest version of GCC (3.0) is one of the most standards compliant compilers out
there.

3. String Class Varieties

The string class is the one of the most vital objects in programming, and string manipulations are most
extensively used. There is a lot of varieties of string classes. Of course, you can build your own string class
by simply inheriting from these string classes −

String class given in this document Appendix A String.h•

 C++ Programming HOW−TO

 2. Recommended C++ Compilers 7

http://www.bloodshed.net/devcpp.html
http://www.borland.com/bcppbuilder/freecompiler
http://msdn.microsoft.com/visualc
http://www.delorie.com/djgpp
http://gcc.gnu.org

Standard C++ Library string class (ANSI/ISO string class at
http://www.msoe.edu/eecs/cese/resources/stl/string.htm and
http://www.sgi.com/tech/stl/basic_string.html

•

The external library Qt, has a Qt String class at http://doc.trolltech.com/qstring.html mirror at
http://www.cs.berkeley.edu/~dmartin/qt/qstring.html

•

If none of these are suitable, you can build your own string class. You can start with one or more of
the pre−built classes listed above (by using single or multiple inheritance.)

•

3.1 Multiple Inheritance − Sample Custom String class

As mentioned above, you can build your own custom string class from the pre−built classes by single or
multiple inheritance. In this section we will build a sample custom string class by using multiple inheritance,
inheriting the standard C++ library string class and the String class presented in Appendix A.

Start by downloading the sample file 'string_multi.h' from Appendix A .

That file is reproduced below:

// **
// Sample program to demonstrate constructing your own string class
// by deriving from the String class and stdlib's "string" class
// **

#ifndef __STRING_MULTI_H_ALDEV_
#define __STRING_MULTI_H_ALDEV_

#include <string>
#include "String.h"
#include "StringBuffer.h"

#ifdef NOT_MSWINDOWS
#else
using namespace std; // required for MS Visual C++ compiler Version 6.0
#endif

// Important Notes: In C++ the constructors, destructors and copy
// operator are NOT inherited by the derived classes!!
// Hence, if the operators like =, + etc.. are defined in
// base class and those operators use the base class's contructors
// then you MUST define equivalent constructors in the derived
// class. See the sample given below where constructors mystring(),
// mystring(char[]) are defined.
//
// Also when you use operator as in atmpstr + mstr, what you are really
// calling is atmpstr.operator+(mstr). The atmpstr is declared a mystring

class mystring:public String, string
{
 public:
 mystring():String() {} // These are needed for operator=, +
 mystring(char bb[]):String(bb) {} // These are needed for operator=, +
 mystring(char bb[], int start, int slength):String(bb, start, slength) {}
 mystring(int bb):String(bb) {} // needed by operator+
 mystring(unsigned long bb):String(bb) {} // needed by operator+

 C++ Programming HOW−TO

3.1 Multiple Inheritance − Sample Custom String class 8

http://www.msoe.edu/eecs/cese/resources/stl/string.htm
http://www.sgi.com/tech/stl/basic_string.html
http://doc.trolltech.com/qstring.html
http://www.cs.berkeley.edu/~dmartin/qt/qstring.html

 mystring(long bb):String(bb) {} // needed by operator+
 mystring(float bb):String(bb) {} // needed by operator+
 mystring(double bb):String(bb) {} // needed by operator+
 mystring(const String & rhs):String(rhs) {} // Copy Constructor needed by operator+
 mystring(StringBuffer sb):String(sb) {} // Java compatibility
 mystring(int bb, bool dummy):String(bb, dummy) {} // for StringBuffer class

 int mystraa; // customizations of mystring
 private:
 int mystrbb; // customizations of mystring
};

#endif // __STRING_MULTI_H_ALDEV_

4. Download String

All the programs, examples are given in Appendix of this document. You can download as a single tar zip,
the String class, libraries and example programs from

Go to http://www.milkywaygalaxy.freeservers.com and click on "Source code C++ Programming
howto" (Milkyway Galaxy site)

•

Mirror sites are at − angelfire, geocities, virtualave, 50megs, theglobe, NBCi, Terrashare,
Fortunecity, Freewebsites, Tripod, Spree, Escalix, Httpcity, Freeservers.

•

4.1 How Can I trust Al Dev's String Class?

You may a have question of mis−trust on the String class software. To build confidence, there is a scientific
method to verify the functionality of Al Dev's String class. In modern days, computer scientists use the CPU
power instead of human brain power to verify and validate the software. Human brain is too slow and hence
it is better to use the computer's power to test and validate software.

The program example_String.cpp go here and click on 'Source code for C++'. (and also given in Appendix
A) has regression test module which you can use to run the regression tests several millions of times
automatically. After running the regression tests on the String class you can certify that the String class
program is a ROCK SOLID and a BULLET−PROOF program.

I tested the String class with repeat cycle = 50000 and it ran and completed the program without crash.
While it is running I did not notice any memory leak. On Linux, I used /usr/bin/gtop, UNIX top command,
KDEStart−>System−>KDE System Guard and KDEStart−>System−>Process management to monitor the
cpu and memory usage.

I recommend that you start the regression test with repeat cycle equal to 10 million or greater. The greater
the repeat cycle number the greater will be your confidence!! Start the test and go to lunch (or go drink
gharam chai − "chai peeke auvo") and come back to see the results!!

5. Usage of String class

 C++ Programming HOW−TO

 4. Download String 9

http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://www.angelfire.com/country/aldev0
http://www.geocities.com/alavoor/index.html
http://aldev0.virtualave.net
http://aldev0.50megs.com
http://members.theglobe.com/aldev1/index.html
http://members.nbci.com/alavoor
http://aldev.terrashare.com
http://members.fortunecity.com/aldev
http://aldev.freewebsites.com
http://members.tripod.lycos.com/aldev
http://members.spree.com/technology/aldev
http://www.escalix.com/freepage/aldev
http://www.httpcity.com/aldev/index.html
http://aldev.freeservers.com
http://www.milkywaygalaxy.freeservers.com

Take notice, this String class is not the same as the string class implemented in the Standard C++ Library.
This special String class is a "home−made" String class, made to help Java programmers convert to C++.
When you are more comfortable with C++, you should use the real string class provided in The Standard C++
Library.

To use String class, you should first refer to a sample program "example_String.cpp" given in Appendix
A and the String class which is given in Appendix A.

The 'String class' is a complete replacement for char and char * datatype. You can use 'String class' just like
char and get much more functionalities. You should link with the library 'libString.a' which you can build
from the makefile given in Appendix A and copy the library to /usr/lib or /lib directory where all the C++
libraries are located. To use the 'libString.a' compile your programs like −

 g++ example.cpp −lString

See illustration sample code as given below −

 String aa;

 aa = "Creating an Universe is very easy, similar to creating a baby human.";

 // You can use aa.val() like a 'char *' variable in programs
 for (unsigned long tmpii = 0; tmpii < aa.length(); tmpii++)
 {
 //fprintf(stdout, "aa.val()[%ld]=%c ", tmpii, aa.val()[tmpii]);
 fprintf(stdout, "aa[%ld]=%c ", tmpii, aa[tmpii]);
 }

 // Using pointers on 'char *' val ...
 for (char *tmpcc = aa.val(); *tmpcc != 0; tmpcc++)
 {
 fprintf(stdout, "aa.val()=%c ", *tmpcc);
 }

5.1 Operators

The 'String class' provides these operators :−

Equal to ==•
Not equal to !=•
Assignment =•
Add to itself and Assignment +=•
String concatenation or addition +•

For example to use operators −

 String aa;
 String bb("Bill Clinton");

 aa = "put some value string"; // assignment operator

 C++ Programming HOW−TO

5.1 Operators 10

 aa += "add some more"; // Add to itself and assign operator
 aa = "My name is" + " Alavoor Vasudevan "; // string cat operator

 if (bb == "Bill Clinton") // boolean equal to operator
 cout << "bb is equal to 'Bill Clinton' " << endl;

 if (bb != "Al Gore") // boolean 'not equal' to operator
 cout << "bb is not equal to 'Al Gore'" << endl;

5.2 Functions

The functions provided by String class has the same name as that of Java language's String class. The
function names and the behaviour is exactly same as that of Java's String class. StringBuffer class is also
provided. This will facilitate portability of code between Java and C++ (you can cut and paste and do
minimum changes to code). The code from Java's function body can be copied into C++ member function
body and with very mininum changes the code will compile under C++. Another advantage is that developers
coding in both Java and C++ do not need to remember two different syntax or function names.

For example to convert integer to string do −

 String aa;

 aa = 34; // The '=' operator will convert int to string
 cout << "The value of aa is : " << aa.val() << endl;

 aa = 234.878; // The '=' operator will convert float to string
 cout << "The value of aa is : " << aa.val() << endl;

 aa = 34 + 234.878;
 cout << "The value of aa is : " << aa.val() << endl;
 // The output aa will be '268.878'

 // You must cast String to convert
 aa = (String) 34 + " Can create infinite number of universes!! " + 234.878;
 cout << "The value of aa is : " << aa.val() << endl;
 // The output aa will be '34 Can create infinite number of universes!! 234.878'

Refer to Appendix A String.h for details about the String class function names. The same file String.h is
reproduced here in next section.

5.3 Renaming the String class

Case 1: Simple rename

If you do not like the String class name then you can use "typedef" to rename the String class.

In all the files where you do include String.h, insert these lines:

// If you do not like the class name String, then you can rename using typedef

 C++ Programming HOW−TO

5.2 Functions 11

typedef String StringSomethingElseIwant;

// Your remaining code may be like this
int main()
{
 StringSomethingElseIwant aa_renstr;
 aa_renstr = "I renamed the String Class using typedef";

 //etc...
}

See the example_String.cpp click on 'Source code for C++'.

Case 2: Resolve conflict

If there is a conflict with another class−name having the same name, and you want to use both this class and
conflicting class then you use this technique − in all the files where you do include String.h, insert these lines:

#define String String_somethingelse_which_I_want
#include "String.h"
#undef String

#include "ConflictingString.h" // This also has String class...

// All your code goes here...
int main()
{
 String_somethingelse_which_I_want aa;
 String bb; // This string class from conflicting string class

 aa = " some sample string";
 bb = " another string abraka−dabraka";

}

The pre−processor will replace all literals of String to "String_somethingelse_which_I_want" and immdiately
undefines String. After undef the conflicting string class header file is included which defines the "String"
class.

6. String.h file

C++ and Java is often used concurrently in many software projects. Programmers jump back and forth
between C++ and Java will find this string class very helpful.

In C++ (or any object oriented language), you just read the "class data−structure" (i.e. interface) to begin
using that class. You just need to understand the interface and not the implementation of the interface. In case
of String class, you just need to read and understand the String class in String.h file. You do not need to read
the entire implementation (String.cpp) in order to use String class. The object oriented classes are real time
saver and they very neatly hide the implementation.

 C++ Programming HOW−TO

Case 2: Resolve conflict 12

http://www.milkywaygalaxy.freeservers.com

(In object oriented Java language there is the equivalent called 'interface' , which hides the implementation
details.)

Given below is String.h file and see also Appendix A String.h

//
// Author : Al Dev Email: alavoor[AT]yahoo.com
// Use string class or String class
//
// To prevent memory leaks − a char class to manage character variables
// Always prefer to use String or string class
// instead of char[] or char *
//

#ifndef __STRING_H_ALDEV_
#define __STRING_H_ALDEV_

// do not use iostream as program becomes bulky..
#ifdef NOT_MSWINDOWS
#include <iostream>
#else
#include <iostream.h> // For backward compatibility. Standard C++ Library headers have no .h
#endif // NOT_MSWINDOWS

#include <stdio.h> // for FILE and sprintf()
//#include <list.h> // for list

// For MS Windows 95 VC++ or Borland C++ compiler do −
//see file d:\program files\CBuilder\include\examples\stdlib\list.cpp and include\list.h
//#include <list> // for list
//using namespace std;

const short INITIAL_SIZE = 50;
const short NUMBER_LENGTH = 300;
const int MAX_ISTREAM_SIZE = 2048;

//class StringBuffer;

// I compiled and tested this string class on Linux (Redhat 7.1) and
// MS Windows Borland C++ version 5.2 (win32). This should also work
// using MS Visual C++ compiler
class String
{
 public:
 String();
 String(const char bb[]); // needed by operator+
 String(const char bb[], int start, int slength); // subset of chars
 String(int bb); // needed by operator+
 String(unsigned long bb); // needed by operator+
 String(long bb); // needed by operator+
 String(float bb); // needed by operator+
 String(double bb); // needed by operator+
 String(const String & rhs); // Copy Constructor needed by operator+
 //String(StringBuffer sb); // Java compatibility − but causes compile problem on MS windows and core dumps
 String(int bb, bool dummy); // for StringBuffer class
 virtual ~String(); // Made virtual so that when base class is deleted
 // then the derived class destructor is called.

 char *val() {return sval;} // It is not safe to make sval public

 C++ Programming HOW−TO

Case 2: Resolve conflict 13

 // Functions below imitate Java language's String object
 unsigned long length();
 char charAt(int where);
 void getChars(int sourceStart, int sourceEnd,
 char target[], int targetStart);
 char* toCharArray();
 char* getBytes();

 bool equals(String str2); // See also == operator
 bool equals(char *str2); // See also == operator
 bool equalsIgnoreCase(String str2);

 bool regionMatches(int startIndex, String str2,
 int str2StartIndex, int numChars);
 bool regionMatches(bool ignoreCase, int startIndex,
 String str2, int str2StartIndex, int numChars);

 String toUpperCase();
 String toLowerCase();

 bool startsWith(String str2);
 bool startsWith(char *str2);

 bool endsWith(String str2);
 bool endsWith(char *str2);

 int compareTo(String str2);
 int compareTo(char *str2);
 int compareToIgnoreCase(String str2);
 int compareToIgnoreCase(char *str2);

 int indexOf(char ch, int startIndex = 0);
 int indexOf(char *str2, int startIndex = 0);
 int indexOf(String str2, int startIndex = 0);

 int lastIndexOf(char ch, int startIndex = 0);
 int lastIndexOf(char *str2, int startIndex = 0);
 int lastIndexOf(String str2, int startIndex = 0);

 String substring(int startIndex, int endIndex = 0);
 String replace(char original, char replacement);
 String replace(char *original, char *replacement);

 String trim(); // See also overloaded trim()

 String concat(String str2); // See also operator +
 String concat(char *str2); // See also operator +
 String concat(int bb);
 String concat(unsigned long bb);
 String concat(float bb);
 String concat(double bb);

 String reverse(); // See also overloaded reverse()
 String deleteCharAt(int loc);
 String deleteStr(int startIndex, int endIndex); // Java's "delete()"

 String valueOf(char ch)
 {char aa[2]; aa[0]=ch; aa[1]=0; return String(aa);}
 String valueOf(char chars[]){ return String(chars);}
 String valueOf(char chars[], int startIndex, int numChars);
 String valueOf(bool tf)
 {if (tf) return String("true"); else return String("false");}

 C++ Programming HOW−TO

Case 2: Resolve conflict 14

 String valueOf(int num){ return String(num);}
 String valueOf(long num){ return String(num);}
 String valueOf(float num) {return String(num);}
 String valueOf(double num) {return String(num);}

 // See also StringBuffer class in this file given below

 // −−−− End of Java like String object functions −−−−−

 //
 // List of additonal functions not in Java
 //
 String ltrim();
 void ltrim(bool dummy); // Directly changes object. dummy to get different signature
 String rtrim();
 void rtrim(bool dummy); // Directly changes object. See also chopall().
 // dummy to get different signature

 void chopall(char ch='\n'); // removes trailing character 'ch'. See also rtrim()
 void chop(); // removes one trailing character

 void roundf(float input_val, short precision);
 void decompose_float(long *integral, long *fraction);

 void roundd(double input_val, short precision);
 void decompose_double(long *integral, long *fraction);

 void explode(char *separator); // see also token() and overloaded explode()
 String *explode(int & strcount, char separator = ' '); // see also token()
 void implode(char *glue);
 void join(char *glue);
 String repeat(char *input, unsigned int multiplier);
 String tr(char *from, char *to); // translate characters
 String center(int padlength, char padchar = ' ');
 String space(int number = 0, char padchar = ' ');
 String xrange(char start, char end);
 String compress(char *list = " ");
 String left(int slength = 0, char padchar = ' ');
 String right(int slength = 0, char padchar = ' ');
 String overlay(char *newstr, int start = 0, int slength = 0, char padchar = ' ');

 String at(char *regx); // matches first match of regx
 String before(char *regx); // returns string before regx
 String after(char *regx); // returns string after regx
 String mid(int startIndex = 0, int length = 0);

 bool isNull();
 bool isInteger();
 bool isInteger(int pos);
 bool isNumeric();
 bool isNumeric(int pos);
 bool isEmpty(); // same as length() == 0
 bool isUpperCase();
 bool isUpperCase(int pos);
 bool isLowerCase();
 bool isLowerCase(int pos);
 bool isWhiteSpace();
 bool isWhiteSpace(int pos);
 bool isBlackSpace();
 bool isBlackSpace(int pos);
 bool isAlpha();
 bool isAlpha(int pos);

 C++ Programming HOW−TO

Case 2: Resolve conflict 15

 bool isAlphaNumeric();
 bool isAlphaNumeric(int pos);
 bool isPunct();
 bool isPunct(int pos);
 bool isPrintable();
 bool isPrintable(int pos);
 bool isHexDigit();
 bool isHexDigit(int pos);
 bool isCntrl();
 bool isCntrl(int pos);
 bool isGraph();
 bool isGraph(int pos);

 void clear();
 int toInteger();
 long parseLong();

 double toDouble();
 String token(char separator = ' '); // see also StringTokenizer, explode()
 String crypt(char *original, char *salt);
 String getline(FILE *infp = stdin); // see also putline()
 //String getline(fstream *infp = stdin); // see also putline()

 void putline(FILE *outfp = stdout); // see also getline()
 //void putline(fstream *outfp = stdout); // see also getline()

 void swap(String aa, String bb); // swap aa to bb
 String *sort(String aa[]); // sorts array of strings
 String sort(int startIndex = 0, int length = 0); // sorts characters inside a string
 int freq(char ch); // returns the number of distinct, nonoverlapping matches
 void Format(const char *fmt, ...);
 String replace (int startIndex, int endIndex, String str);

 void substring(int startIndex, int endIndex, bool dummy); // Directly changes object
 void reverse(bool dummy); // Directly changes object. dummy to get different signature
 String deleteCharAt(int loc, bool dummy); // Directly changes object
 String deleteStr(int startIndex, int endIndex, bool dummy);
 void trim(bool dummy); // Directly changes object. dummy to get different signature
 String insert(int index, String str2);
 String insert(int index, String str2, bool dummy); // Directly changes object
 String insert(int index, char ch);
 String insert(int index, char ch, bool dummy); // Directly changes object
 String insert(char *newstr, int start = 0, int length = 0, char padchar = ' ');

 String dump(); // Dump the string like 'od −c' (octal dump) does

 // required by Java's StringBuffer
 void ensureCapacity(int capacity);
 void setLength(int len);
 void setCharAt(int where, char ch); // see also charAt(), getCharAt()

 // required by Java's Integer class, Long, Double classes
 int parseInt(String ss) {return ss.toInteger();}
 int parseInt(char *ss)
 {String tmpstr(ss); return tmpstr.toInteger();}
 long parseLong(String ss) {return ss.parseLong();}
 long parseLong(char *ss)
 {String tmpstr(ss); return tmpstr.parseLong();}
 float floatValue() {return (float) toDouble(); }
 double doubleValue() {return toDouble(); }
 char * number2string(int bb); // see also String(int)
 char * number2string(long bb); // see also String(long)

 C++ Programming HOW−TO

Case 2: Resolve conflict 16

 char * number2string(unsigned long bb); // see also String(long)
 char * number2string(double bb); // see also String(double)

 ///
 // List of duplicate function names
 ///
 // char * c_str() // use val()
 // bool find(); // Use regionMatches()
 // bool search(); // Use regionMatches()
 // bool matches(); // Use regionMatches()
 // int rindex(String str2, int startIndex = 0); Use lastIndexOf()
 // String blanks(int slength); // Use repeat()
 // String append(String str2); // Use concat() or + operator
 // String prepend(String str2); // Use + operator. See also append()
 // String split(char separator = ' '); // Use token(), explode() or StringTokenizer class
 bool contains(char *str2, int startIndex = 0); // use indexOf()
 // void empty(); Use is_empty()
 // void vacuum(); Use clear()
 // void erase(); Use clear()
 // void zero(); Use clear()
 // bool is_float(); Use is_numeric();
 // bool is_decimal(); Use is_numeric();
 // bool is_Digit(); Use is_numeric();
 // float float_value(); Use toDouble();
 // float tofloat(); Use toDouble();
 // double double_value(); Use toDouble();
 // double numeric_value(); Use toDouble();
 // int int_value(); Use toInteger()
 // int tonumber(); Use toInteger()
 // String get(); Use substring() or val() but prefer Java's substring
 // String getFrom(); Use substring() or val() but prefer Java's substring
 // String head(int len); Use substring(0, len)
 // String tail(int len); Use substring(length()−len, length())
 // String cut(); Use deleteCharAt() or deleteStr()
 // String cutFrom(); Use deleteCharAt() or deleteStr()
 // String paste(); Use insert()
 // String fill(); Use replace()
 // char firstChar(); // Use substring(0, 1);
 // char lastChar(); // Use substring(length()−1, length());
 // String findNext(); Use token(), explode() or StringTokenizer class

 // begin(); iterator. Use operator [ii]
 // end(); iterator. Use operator [ii]
 // copy(); Use assignment = operator, String aa = bb;
 // clone(); Use assignment = operator, String aa = bb;
 // void putCharAt(int where, char ch); Use setCharAt()
 // void replaceCharAt(int where, char ch); Use setCharAt()
 // char getCharAt(int where); Use CharAt()
 // void parseArgs(int where, char ch); Use StringTokensizer class, token() or explode()
 // void truncate(); Use trim(), rtrim(), chop() or chopall()
 // convert number to string notostring(), int2str, long2str Use number2string()

 // All Operators ...
 String operator+ (const String & rhs);
 friend String operator+ (const String & lhs, const String & rhs);

 String& operator+= (const String & rhs); // using reference will be faster
 String& operator= (const String & rhs); // using reference will be faster
 bool operator== (const String & rhs); // using reference will be faster
 bool operator== (const char *rhs);
 bool operator!= (const String & rhs);
 bool operator!= (const char *rhs);

 C++ Programming HOW−TO

Case 2: Resolve conflict 17

 char operator [] (unsigned long Index) const;
 char& operator [] (unsigned long Index);
 friend ostream & operator<< (ostream & Out, const String & str2);
 friend istream & operator>> (istream & In, String & str2);

 bool String::operator< (const char *rhs) const; // handy methods for map & vector:
 bool String::operator< (const String & rhs) const; // handy methods for map & vector:

 //do later: static list<String> explodeH; // list head

 protected:
 char *sval; // Not safe to make sval public
 void verifyIndex(unsigned long index) const; // not "inline" because MS Win32 complains
 void verifyIndex(unsigned long index, char *aa) const;// not "inline" − MS Win32 complains

 void _str_cat(char bb[]);
 void _str_cat(int bb);
 void _str_cat(unsigned long bb);
 void _str_cat(float bb);

 void _str_cpy(char bb[]);
 void _str_cpy(int bb); // itoa
 void _str_cpy(unsigned long bb);
 void _str_cpy(float bb); // itof

 private:
 // Note: All the private variables and functions begin
 // with _ (underscore)

 //static String *_global_String; // for use in add operator
 //inline void _free_glob(String **aa);

 bool _equalto(const String & rhs, bool type = false);
 bool _equalto(const char *rhs, bool type = false);
 String *_pString; // temporary pointer for internal use..
 char *_pNumber2String; // temporary pointer for internal use..
 inline void _allocpString();
 inline void _allocpNumber2String();
 inline void Common2AllCstrs();
 inline void _reverse();
 inline void _deleteCharAt(int loc);
 inline void _deleteStr(int startIndex, int endIndex);
 inline void _trim();
 inline void _ltrim();
 inline void _rtrim();
 inline void _substring(int startIndex, int endIndex);
 void _roundno(double input_dbl, float input_flt, short precision, bool type);
};

// Global variables are defined in String.cpp

#endif // __STRING_H_ALDEV_

6.1 StringBuffer.h

C++ and Java is often used concurrently in many software projects. Programmers jump back and forth
between C++ and Java will find this stringbuffer class very helpful.

 C++ Programming HOW−TO

6.1 StringBuffer.h 18

//
// Author : Al Dev Email: alavoor[AT]yahoo.com
//

#ifndef __STRINGBUFFER_H_ALDEV_
#define __STRINGBUFFER_H_ALDEV_

// Imitate Java's StringBuffer object
// This class is provided so that the Java code is
// portable to C++, requiring minimum code changes
// Note: While coding in C++ DO NOT use this class StringBuffer,
// this is provided only for compiling code written in Java
// which is cut/pasted inside C++ code.
class StringBuffer: public String
{
 public:
 StringBuffer();
 ~StringBuffer();
 StringBuffer(char *aa);
 StringBuffer(int size);
 StringBuffer(String str);

 int capacity();
 StringBuffer append(String str2);
 // See also operator +
 //{ *this += str2; return *this;} // This is causing core dumps...

 StringBuffer append(char *str2);
 StringBuffer append(int bb);
 StringBuffer append(unsigned long bb) ;
 StringBuffer append(float bb) ;
 StringBuffer append(double bb) ;

 StringBuffer insert(int index, String str2);
 StringBuffer insert(int index, char ch);

 StringBuffer reverse();

 // Java's "delete()". Cannot use name delete in C++
 StringBuffer deleteStr(int startIndex, int endIndex);
 StringBuffer deleteCharAt(int loc);

 StringBuffer substring(int startIndex, int endIndex = 0);
 void assign(char *str);

 private:
 StringBuffer *_pStringBuffer;
 inline void allocpStringBuffer();
 inline void Common2AllCstrs();
};

#endif // __STRINGBUFFER_H_ALDEV_

6.2 StringTokenizer.h

C++ and Java is often used concurrently in many software projects. Programmers jump back and forth
between C++ and Java will find this stringtokenizer class very helpful.

 C++ Programming HOW−TO

6.2 StringTokenizer.h 19

//
// Author : Al Dev Email: alavoor[AT]yahoo.com
//

#ifndef __STRINGTOKENIZER_H_ALDEV_
#define __STRINGTOKENIZER_H_ALDEV_

// Imitate Java's StringTokenizer class
// provided to compile Java code in C++ and vice−versa
class StringTokenizer: public String
{
 public:
 StringTokenizer(String str);
 StringTokenizer(String str, String delimiters);
 StringTokenizer(String str, String delimiters, bool delimAsToken);
 ~StringTokenizer();

 int countTokens();
 bool hasMoreElements();
 bool hasMoreTokens();
 String nextElement(); // in Java returns type 'Object'
 String nextToken();
 String nextToken(String delimiters);
 private:
 int CurrentPosition; // current index on string
 int TotalTokens;
 int RemainingTokens;
 char * ListOfDl; // list of delimiters
 char * WorkStr; // temp work string
 char * OrigStr; // original string passed
 bool DlFlag; // delimiter flag
 inline void vPrepWorkStr(char *delimiters = NULL);
};

#endif // __STRINGTOKENIZER_H_ALDEV_

7. The Standard C++ Library string class

While the previously mentioned String class (note the uppercase S), is a good thing for people coming from
Java, then you should take notice of the "real" string class provided by The Standard C++ Library.

The string class was made to overcome one of the greatest pitfalls in C; character arrays. While character
arrays are extremely fast, they have many bad sides. Character arrays is the cause of many bugs, and parsing
character arrays is very time consuming.

The string class brings a good interface for parsing and handling strings, and it's even STL compatible, so it
can be used with all the general STL algorithms. Actually you could say that a string is a vector<char>. A
container of chars, or an advanced array of chars.

Useful string reference can be found at the following sites:

SGI STL basic_string reference: http://www.sgi.com/tech/stl/basic_string.html.•

 C++ Programming HOW−TO

 7. The Standard C++ Library string class 20

http://www.sgi.com/tech/stl/basic_string.html

7.1 string by example

Creating a string is easy:

#include <string>
#include <iostream>

using namespace std;

int main()
{
 string str("Hello World!"); // Or string str = "Hello World!";
 cout << str << endl;
}

This code will create a string called "str', and put "Hello World!' into it. It is then being outputted to standard
output by using cout.

(Note that I will skip the headers and the namespace from now on.)

Taking a substring of a string is also easy:

string str("Hello Universe!");
string start = str.substr(0, 5);
string end = str.substr(5);

This will put the first 6 characters into the string "start", and the rest into "end".

To get the size or length of a string, you would simply do this:

string str("How long is this string?");
cout << "Length of string is: " << str.size() << endl;

You can also use length() which works exactly the same.

7.2 Searching a string

Searching a string is much easier than using plain character arrays, the string class provides efficient member
functions to search through the string. All member functions return string::size_type.

Member function
Purpose

find() find the first position of the specified substring

find_first_of() equal to find(), but finds the first position of any

 C++ Programming HOW−TO

7.1 string by example 21

character specified

find_last_of()
equal to findfirstof(), but finds the last position of
any character specified

find_first_not_of()
equal to findfirstof(), but returns the position of
the first character not of those specifed

find_last_not_of()
equal to findlastof(), but returns the last position
of any characters not specified

rfind() equal to find(), but searches backwards

string search member functions

A very common thing to do, is to search a string for contents. This can be done by using find()

string str("Hello, can you find Ben?");
string::size_type position = str.find("Ben");
cout << "First occurence of Ben was found at: " << position << endl;

This code make a case sensitive search for 'Ben' in the string, and put the start position in the variable
'position' of type string::size_type. Note that the return value is not an int, but a string::size_type which is a
special implementation defined integral value.

The member function find_first_of() needs a practical introduction, consider this:

string s = "C++ is an impressive language.";
string::size_type pos = s.find_first_of(" .");

while (pos != string::npos) {
 cout << "Found space or dot at: " << pos << endl;
 pos = s.find_first_of(" .", pos + 1);
}

By using find_first_of(), we can search the string for any character of the first argument, here we decide to
search for a space or a dot.

Try compiling the program and check the output.

7.3 A string tokenizer

A very common operation with strings, is to tokenize it with a delimiter of your own choice. This way you
can easily split the string up in smaller pieces, without fiddling with the find() methods too much. In C, you
could use strtok() for character arrays, but no equal function exists for strings. This means you have to make
your own. Here is a couple of suggestions, use what suits your best.

The advanced tokenizer:

 C++ Programming HOW−TO

7.3 A string tokenizer 22

void Tokenize(const string& str,
 vector<string>& tokens,
 const string& delimiters = " ")
{
 // Skip delimiters at beginning.
 string::size_type lastPos = str.find_first_not_of(delimiters, 0);
 // Find first "non−delimiter".
 string::size_type pos = str.find_first_of(delimiters, lastPos);

 while (string::npos != pos || string::npos != lastPos)
 {
 // Found a token, add it to the vector.
 tokens.push_back(str.substr(lastPos, pos − lastPos));
 // Skip delimiters. Note the "not_of"
 lastPos = str.find_first_not_of(delimiters, pos);
 // Find next "non−delimiter"
 pos = str.find_first_of(delimiters, lastPos);
 }
}

The tokenizer can be used in this way:

#include <string>
#include <algorithm>
#include <vector>

using namespace std;

int main()
{
 vector<string> tokens;

 string str("Split me up! Word1 Word2 Word3.");

 Tokenize(str, tokens);

 copy(tokens.begin(), tokens.end(), ostream_iterator<string>(cout, ", "));
}

The above code will use the Tokenize function, take the first argument str and split it up. And because we
didn't supply a third parameter to the function, it will use the default delimiter " ", that is − a whitespace. All
elements will be inserted into the vector tokens we created.

In the end we copy() the whole vector to standard out, just to see the contents of the vector on the screen.

Another approach is to let stringstreams do the work. streams in C++ have the special ability, that they read
until a whitespace, meaning the following code works if you only want to split on spaces:

#include <vector>
#include <string>
#include <sstream>

using namespace std;

 C++ Programming HOW−TO

7.3 A string tokenizer 23

int main()
{
 string str("Split me by whitespaces");
 string buf; // Have a buffer string
 stringstream ss(str); // Insert the string into a stream

 vector<string> tokens; // Create vector to hold our words

 while (ss >> buf)
 tokens.push_back(buf);
}

And that's it! The stringstream will use the output operator (>>) and put a string into buf everytime a
whitespace is met, buf is then used to push_back() into the vector. And afterwards our vector tokens will
contain all the words in str.

8. File Class

C++ and Java is often used concurrently in many software projects. Programmers jump back and forth
between C++ and Java will find this File class very helpful.

You would use the File class to manipulate the operating system files. This class is an imitation of Java's File
class and will be very useful in C++ programming. Using this File class in C++ you can do if file exists() ?, if
directory exists() ?, file length() and other functions.

Note that these classes has some great functionality not supported in The Standard C++ Library, but don't
confuse them with fstreams(iostreams), which is the way you should perform many other operations on files.

C++ File class is at File.h http://www.angelfire.com/country/aldev0/cpphowto/File.h and File.cpp
File.cpp click on 'Source code of C++'.

•

Java: Java.io.File class definition http://java.sun.com/j2se/1.3/docs/api/java/io/File.html•
Quick Reference on File Class http://unicornsrest.org/reference/java/qref11/java.io.File.html•

9. Memory Allocation in C++

In C, you use malloc(), free() and variants of malloc() to allocate and free memory, but these functions have
their pitfalls. Therefor C++ introduced operators for handling memory, these operators are called new and
delete. These operators allocates and frees memory from the heap (or sometimes called the free store) at
runtime.

In C++, you should always use new and delete unless you're really forced to use malloc() and free(). But be
aware that you cannot mix the two. You cannot malloc() memory, and then delete it afterwards, likewise you
can't "new" memory, and then free it with free().

9.1 C++ Zap (Delete) function

The delete and new operators in C++ are much better than the malloc and free functions of C. Consider using
new and zap (delete function) instead of malloc and free as much as possible.

 C++ Programming HOW−TO

8. File Class 24

http://www.angelfire.com/country/aldev0/cpphowto/File.h
http://www.milkywaygalaxy.freeservers.com
http://java.sun.com/j2se/1.3/docs/api/java/io/File.html
http://unicornsrest.org/reference/java/qref11/java.io.File.html

To make delete operators even more cleaner, make a Zap() inline function. Define a zap() function like this:

// Put an assert to check if x is NULL, this is to catch
// program "logic" errors early. Even though delete works
// fine with NULL by using assert you are actually catching
// "bad code" very early

// Defining Zap using templates
// Use zap instead of delete as this will be very clean
template <class T>
inline void zap(T & x)
{
 {assert(x != NULL);}
 delete x;
 x = NULL;
}

// In C++ the reason there are 2 forms of the delete operator is − because
// there is no way for C++ to tell the difference between a pointer to
// an object and a pointer to an array of objects. The delete operator
// relies on the programmer using "[]" to tell the two apart.
// Hence, we need to define zaparr function below.
// To delete array of pointers
template <class T>
inline void zaparr(T & x)
{
 {assert(x != NULL);}
 delete [] x;
 x = NULL;
}

The zap() function will delete the pointer and set it NULL. This will ensure that even if multiple zap()'s are
called on the same deleted pointer then the program will not crash. Please see the function zap_example() in
example_String.cpp click on 'Source code of C++'.

 // See zap_example() in example_String.cpp
 zap(pFirstname);
 //zap(pFirstname); // no core dumps. Because pFirstname is NULL now
 //zap(pFirstname); // no core dumps. Because pFirstname is NULL now

 zap(pLastname);
 zap(pJobDescription);

 int *iiarray = new int[10];
 zaparr(iiarray);

There is nothing magical about this, it just saves repetative code, saves typing time and makes programs more
readable. The C++ programmers often forget to reset the deleted pointer to NULL, and this causes annoying
problems causing core dumps and crashes. The zap() takes care of this automatically. Do not stick a typecast
in the zap() function −− if something errors out on the above zap() function it likely has another error
somewhere.

 C++ Programming HOW−TO

8. File Class 25

http://www.milkywaygalaxy.freeservers.com

Also my_malloc() , my_realloc() and my_free() should be used instead of malloc(), realloc() and free(), as
they are much cleaner and have additional checks. For an example, see the file "String.h" which is using the
my_malloc() and my_free() functions.

WARNING : Do not use free() to free memory allocated with 'new' or 'delete' to free memory allocated with
malloc. If you do, then results will be unpredictable.

See the zap examples in example_String.cpp click on 'Source code of C++'.

9.2 Usage of my_malloc and my_free

Try to avoid using malloc and realloc as much as possible and use new and zap(delete). But sometimes you
may need to use the C style memory allocations in C++. Use the functions my_malloc() , my_realloc() and
my_free(). These functions do proper allocations and initialisations and try to prevent memory problems.
Also these functions (in DEBUG mode) can keep track of memory allocated and print total memory usage
before and after the program is run. This tells you if there are any memory leaks.

The my_malloc and my_realloc is defined as below. It allocates little more memory (SAFE_MEM = 5) and
initializes the space and if it cannot allocate it exits the program. The 'call_check(), remove_ptr()' functions
are active only when DEBUG_MEM is defined in makefile and are assigned to ((void)0) i.e. NULL for
non−debug production release. They enable the total−memory used tracing.

void *local_my_malloc(size_t size, char fname[], int lineno)
{
 size_t tmpii = size + SAFE_MEM;
 void *aa = NULL;
 aa = (void *) malloc(tmpii);
 if (aa == NULL)
 raise_error_exit(MALLOC, VOID_TYPE, fname, lineno);
 memset(aa, 0, tmpii);
 call_check(aa, tmpii, fname, lineno);
 return aa;
}

char *local_my_realloc(char *aa, size_t size, char fname[], int lineno)
{
 remove_ptr(aa, fname, lineno);
 unsigned long tmpjj = 0;
 if (aa) // aa != NULL
 tmpjj = strlen(aa);
 unsigned long tmpqq = size + SAFE_MEM;
 size_t tmpii = sizeof (char) * (tmpqq);
 aa = (char *) realloc(aa, tmpii);
 if (aa == NULL)
 raise_error_exit(REALLOC, CHAR_TYPE, fname, lineno);

 // do not memset memset(aa, 0, tmpii);
 aa[tmpqq−1] = 0;
 unsigned long kk = tmpjj;
 if (tmpjj > tmpqq)
 kk = tmpqq;
 for (; kk < tmpqq; kk++)
 aa[kk] = 0;
 call_check(aa, tmpii, fname, lineno);
 return aa;

 C++ Programming HOW−TO

 9.2 Usage of my_malloc and my_free 26

http://www.milkywaygalaxy.freeservers.com

}

See my_malloc.cpp. and the header file my_malloc.h. for full implementation of the my_malloc program.

An example on usage of my_malloc and my_free as below:

 char *aa;
 int *bb;
 float *cc;
 aa = (char *) my_malloc(sizeof(char)* 214);
 bb = (int *) my_malloc(sizeof(int) * 10);
 cc = (float *) my_malloc(sizeof(int) * 20);

 aa = my_realloc(aa, sizeof(char) * 34);
 bb = my_realloc(bb, sizeof(int) * 14);
 cc = my_realloc(cc, sizeof(float) * 10);

Note that in my_realloc you do not need to cast the datatype as the variable itself is passed and correct
my_realloc is called which returns the proper datatype pointer. The my_realloc has overloaded functions for
char*, int* and float*.

9.3 Garbage Collector for C++

In C/C++ Garbage Collection is not a standard feature and hence allocating and freeing storage explicitly is
difficult, complicated and is error−prone. The Garbage Collection (GC) is not part of the C++ standard
because there are just so many ways how one could implement it; there are many GC techniques, and
deciding to use a particular one would not be good for certain programs. Computer scientists had designed
many GC algorithms, each one of them catering to a particular problem domain. There is no one single
generic GC which will tackle all the problem domains. As a consequence, GC is not part of C++ standard,
they just left it out. Still, you always have the choice of many freely available C++ libraries that do the job for
you.

Visit these sites:

Garbage Collection•
Memory management•
Java−like library − Hans−J. Boehm's garbage collector at Hans−Boehm works quite well under linux,
solaris and windows.

•

10. Pointers are problems

Pointers are not required for general purpose programming. In modern languages like Java there is no support
for pointers (Java internally uses pointers). Pointers make the programs messy and programs using pointers
are very hard to read.

Avoid using pointers as much as possible and use references. Pointers are really a great pain. It is possible to
write an application without using pointers. You should pointers only in those cases where references will not

 C++ Programming HOW−TO

 9.3 Garbage Collector for C++ 27

http://www.xanalys.com/software_tools/mm/glossary/g.html#garbage.collection
http://www.xanalys.com/software_tools/mm
http://www.hpl.hp.com/personal/Hans_Boehm/gc/index.html

work.

A reference is an alias; when you create a reference, you initialize it with the name of another object, the
target. From the moment on, the reference acts as an alternative name of the target, and anything you do to
the reference is really done to the target.

Syntax of References: Declare a reference by writing the type, followed by the reference operator (&),
followed by the reference name. References MUST be initialized at the time of creation. For example −

 int weight;
 int & rweight = weight;

 DOG aa;
 DOG & rDogRef = aa;

Do's of references −

Do use references to create an alias to an object•
Do initialize all references•
Do use references for high efficiency and performance of program.•
Do use const to protect references and pointers whenever possible.•

Do not's of references −

IMPORTANT: Don't use references to NULL objects•
Don't confuse the address of operator & with reference operator. The references are used in the
declarations section (see Syntax of References above).

•

Don't try to reassign a reference•
Don't use pointers if references will work•
Don't return a reference to a local object•
Don't pass by reference if the item referred to may go out of scope•

11. Debugging

Finding the exact source to a bug can be a troublesome process, however there is several techniques used for
debugging:

Printing to standard out − for simple cases, print the values of several variables, see what they
contain − and find out where exactly your program crashes

•

Using a debugger, a debugger lets you set breakpoints, and make backtraces in your code, while it's
running. Most IDEs come with a debugger, for GNU systems there is gdb.

•

Use compiler features, on most compilers you can enable more warnings, for example on g++, use
−Wall

•

Sites to help debugging:

Debugging C and C++ in a UNIX enironment:
http://www.liacs.nl/~jdassen/onderwijs/stuva/debug/debug.html

•

 C++ Programming HOW−TO

11. Debugging 28

http://www.liacs.nl/~jdassen/onderwijs/stuva/debug/debug.html

MPatrol − a useful memory debugging tool: http://www.cbmamiga.demon.co.uk/mpatrol•
NJAMD − another useful memory debuggging tool: http://sourceforge.net/projects/njamd/•
LeakTracer − a simple yet powerful tool to find memory leaks:
http://www.andreasen.org/LeakTracer/

•

11.1 Debug files

To debug any C++ or C programs include the file debug.h and in your 'Makefile' define DEBUG_STR,
DEBUG_PRT, DEBUG_MEM to turn on the traces from the debug.h functions. When you remove the
'−DDEBUG_STR' etc.. then the debug function calls are set to ((void)0) i.e. NULL, hence it has no impact on
final production release version of project. You can generously use the debug functions in your programs and
it will not increase the size of production executable.

See the file debug.cpp for implementation of debug routines.

And see the file my_malloc.cpp for a sample which uses debug.h and debug functions.

See the sample Makefile .

12. IDE's and editors for C++

When programming C++, it is a good idea to used to an editor or an IDE. Most programmers have their own
favourites, and it's a religious discussion on which is better.

You can choose to use an IDE (Integrated Development Environment), which is an application with
embedded editor, compiler, documentation and more. And then there is the standalone editors, which some
people likes better.

12.1 IDE's

The following IDE tools (Integrated Development Environment) are available for C++:

The "top rated" Dev−C++ is an full−featured Integrated Development Environment (IDE) for both
Win32 and Linux. It uses GCC, Mingw or Cygwin as compiler and libraries set. It is at
http://www.bloodshed.net/devcpp.html and at mirror−site

•

KDE KDevelop Kdevelop•
Blatura site C++ Tools•
Amulet Amulet•
App Dev suite Angoss•
Make replacement Brass•
S/W product metrics CCC•
Project mgmt, edit, compile, debug C−Forge•
Dev environment Code Crusader•
Graphic gdb Code Medic•
Code analysis CodeWizard•
Gen HTML, LaTex for C++ cod Doc C++•
GUI toolkit openGL Ftk•
C++ and Java IDE GLG IDE•

 C++ Programming HOW−TO

11.1 Debug files 29

http://www.cbmamiga.demon.co.uk/mpatrol
http://sourceforge.net/projects/njamd/
http://www.andreasen.org/LeakTracer/
http://www.bloodshed.net/devcpp.html
http://sourceforge.net/projects/dev-cpp
http://www.kdevelop.org
http://home.xnet.com/~blatura/linapp6.html#tools
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/amulet/www
http://www.angoss.com/sw/home.htm
http://wsd.iitb.fhg.de/~kir/brashome/
http://www.fste.ac.cowan.edu.au/~tlittlef
http://www.codeforge.com
http://www.cco.caltech.edu/~jafl/jx/progs.html
http://www.cco.caltech.edu/~glenn/medic/
http://www.parasoft.com/wizard/index.html
http://www.zib.de/Visual/software/doc++/index.html
http://fltk.easysw.com/
http://www.genlogic.com

HP IDE HP Eloquence•
IDE C++, Java, Pascal RHIDE•
IDE for C++, Java SNiff•
IDE for C++, Java Wipeout•
X−based dev env XWPE•

12.2 Editors

The problem with IDE's is many times that their editors have a big lack of functionality. Therefor many
people wants a powerful editor alone, and then supply with a compiler next to it.

Of powerful editors, vim and emacs can be mentioned. They are both available for most platforms − and they
support syntax highlighting and other things which will make you more efficient.

Other editors include UltraEdit(win32 only) and EditPlus(win32 only).

Vim online at http://vim.sourceforge.net/•
Vim color text editor for C++, C http://www.linuxdoc.org/LDP/HOWTO/Vim−HOWTO.html•
Emacs at http://www.gnu.org/software/emacs/•
EditPlus for Windows at http://www.editplus.com/•
UltraEdit for Windows at http://www.ultraedit.com/•

12.3 Other ressources

C++ Beautifier HOWTO http://www.linuxdoc.org/LDP/HOWTO/C−C++Beautifier−HOWTO.html•
Source code control system for C++ programs (CVS HOWTO)
http://www.linuxdoc.org/LDP/HOWTO/CVS−HOWTO.html

•

Linux goodies main site is at http://www.milkywaygalaxy.freeservers.com Mirror sites are at −
angelfire, geocities, virtualave, 50megs, theglobe, NBCi, Terrashare, Fortunecity, Freewebsites,
Tripod, Spree, Escalix, Httpcity, Freeservers.

•

13. C++ Online Textbooks and Docs

There are MORE THAN ONE MILLION online articles/textbooks/reference guides on C++ language. That
is because C++ is used extensively for a very long period of time. You can find them using the Internet
search engines like Google, Yahoo, Lycos, Excite etc..

"C++ Annotations" online book main site: Annotations•
"Teach Yourself C++ in 21 days" online textbook Teach C++•
C++ Textbook by Bruce Eckel Thinking in C++•
C++ Open books: Panorama and click on Open Books.•
"Who's Afraid of C++?" online textbook: Steveheller•
"Introduction to Object Oriented Programming" an ebook C++ OOP•
C++ in Hypertext C++ Hypertext•
Object Oriented Systems OOP article•

C++ Language Reference from cplusplus.com http://www.cplusplus.com/ref•

 C++ Programming HOW−TO

12.2 Editors 30

http://www.hp-eloquence.com/sales/info.html
http://www.tu-chemnitz.de/~sho/rho/rhide.html
http://www.takefive.com/
http://www.softwarebuero.de/wipeout-eng.html
http://www.rpi.edu/~payned/xwpe
http://vim.sourceforge.net/
http://www.linuxdoc.org/LDP/HOWTO/Vim-HOWTO.html
http://www.gnu.org/software/emacs/
http://www.editplus.com/
http://www.ultraedit.com/
http://www.linuxdoc.org/LDP/HOWTO/C-C++Beautifier-HOWTO.html
http://www.linuxdoc.org/LDP/HOWTO/CVS-HOWTO.html
http://www.milkywaygalaxy.freeservers.com
http://www.angelfire.com/country/aldev0
http://www.geocities.com/alavoor/index.html
http://aldev0.virtualave.net
http://aldev0.50megs.com
http://members.theglobe.com/aldev1/index.html
http://members.nbci.com/alavoor
http://aldev.terrashare.com
http://members.fortunecity.com/aldev
http://aldev.freewebsites.com
http://members.tripod.lycos.com/aldev
http://members.spree.com/technology/aldev
http://www.escalix.com/freepage/aldev
http://www.httpcity.com/aldev/index.html
http://aldev.freeservers.com
http://www.icce.rug.nl/documents/cplusplus
http://guides.oernii.sk/c++/index.htm
http://www.mindview.net/Books/DownloadSites
http://www.softpanorama.org/Bookshelf/cpp.shtml
http://www.steveheller.com/whos
http://www.gnacademy.org/uu-gna/text/cc/Tutorial/tutorial.html
http://cs.nmhu.edu/personal/curtis/cs1htmlfiles/Cs1text.htm
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-toolbox_p.html
http://www.cplusplus.com/ref

C++ Documentation from cplusplus.com http://www.cplusplus.com•

Common C++ Pitfalls to be avoided http://www.horstmann.com/cpp/pitfalls.html•

Porting C++ to Java PortingC•
C/C++ Journals UtahJournals•
Yahoo C++ category site CCyahoo•
C Library Reference Guide c_guide•
Online textbooks C++/Java FreeLib•
"C++ In Action" by Bartosz Milewski at http://www.relisoft.com/book/index.htm•
Amusing examples of how not to write code. "How to write unmaintainable code" at
http://mindprod.com/unmain.html

•

Java books which will be useful for C++ programmers:

Great Web reference site WebRef•
Many Java books JBooks•
Intro to Java V3.0 JavaNotes mirror JavaNotes•
Web Library: http://www.itlibrary.com•
Thinking in Java: Thinking Java•
John Hopkins Univ − Java resources Hall•
online Java tutorial Chortle•
Practical guide for Java SunBooks•
Java Soton•

13.1 C++ Sites

Visit the following C++ sites :−

C++ STL basic string class documentation is at http://www.sgi.com/tech/stl/basic_string.html.•
See the section STL References•

C++ Crash−proof site http://www.troubleshooters.com/codecorn/crashprf.htm•
C++ Memory site http://www.troubleshooters.com/codecorn/memleak.htm•

GNU Main site http://www.gnu.org and gnu C++ site at http://gcc.gnu.org•
AS University C++ Standard String class http://www.eas.asu.edu/~cse200/outline•

Java JString for C++ http://www.mike95.com/c_plusplus/classes/JString/JString_cpp.asp•
C++ Language Reference http://www.msoe.edu/~tritt/cpplang.html•
C++ Program examples and samples http://www.msoe.edu/~tritt/cpp/examples.html•
Neil's C++ stuff http://www.cyclone7.com/cpp•

Internet has vast amounts of documentation on C++. Visit the search engines like Google, Yahoo, Lycos,
Infoseek, Excite. Type in the keywords 'C++ tutorials' 'C++ references' 'C++ books' . You can narrow
down the search criteria by clicking on Advanced search and select search by exact phrase

http://www.google.com•
http://www.yahoo.com•
http://www.lycos.com•

 C++ Programming HOW−TO

13.1 C++ Sites 31

http://www.cplusplus.com
http://www.horstmann.com/cpp/pitfalls.html
http://www.ibm.com/java/education/portingc
http://www.math.utah.edu/pub/tex/bib/toc/cccuj.html
http://dir.yahoo.com/Computers_and_Internet/Programming_Languages/C_and_C__/C__
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/index.html
http://www.informit.com/free_library
http://www.relisoft.com/book/index.htm
http://mindprod.com/unmain.html
http://www.webreference.com/index2.html
http://freewarejava.com/books/index.shtml
http://math.hws.edu/javanotes
http://matrix.mvhs.fuhsd.org/~deruiter/javanotes3/contents.html
http://www.itlibrary.com
http://www.mindview.net/Books/DownloadSites
http://www.apl.jhu.edu/~hall/java
http://chortle.ccsu.ctstateu.edu/cs151/cs151java.html
http://java.sun.com/docs/books/tutorial/index.html
http://journals.ecs.soton.ac.uk/java/tutorial/TOC.html
http://www.sgi.com/tech/stl/basic_string.html
http://www.troubleshooters.com/codecorn/crashprf.htm
http://www.troubleshooters.com/codecorn/memleak.htm
http://www.gnu.org
http://gcc.gnu.org
http://www.eas.asu.edu/~cse200/outline
http://www.mike95.com/c_plusplus/classes/JString/JString_cpp.asp
http://www.msoe.edu/~tritt/cpplang.html
http://www.msoe.edu/~tritt/cpp/examples.html
http://www.cyclone7.com/cpp
http://www.google.com
http://www.yahoo.com
http://www.lycos.com

http://www.infoseek.com•
http://www.excite.com•
http://www.mamma.com•

13.2 C++ Tutorials

There are many on−line tutorials available on internet. Type 'C++ tutorials' in the search engine.

C++ Tutorial http://www.xploiter.com/programming/c/index.shtml•
Cplusplus.com Tutorial http://www.cplusplus.com/doc/tutorial•
C++ Tutorial IISc, India
http://www.csa.iisc.ernet.in/Documentation/Tutorials/StyleGuides/c++−style.html

•

C++ Tutorial Brown Univ http://wilma.cs.brown.edu/courses/cs032/resources/C++tutorial.html•
C++ Tutorial http://home.msuiit.edu.ph/~ddd/tutorials/cpp/cpplist.htm•
C++ Tutorial IOstreams http://osiris.sunderland.ac.uk/~cs0pdu/pub/com365/Sched3/iocpp.html•

13.3 Useful links

Bird's eye view of C++ URLs (about 153 url links)
http://www.enteract.com/~bradapp/links/cplusplus−links.html

•

This URL: http://www.snippets.org portable C code contains over 360 files. •

Mathtools at http://www.mathtools.net is a technical computing portal for all scientific and
engineering needs. The portal is free and contains over 20,000 useful links to technical computing
programmers, covering C/C++, Java, Excel, MATLAB, Fortran and others.

•

13.4 C++ Quick−Reference

Type 'C++ Reference' in the search engine.

C++ quick ref http://www.cs.jcu.edu.au/~david/C++SYNTAX.html•
C++ Standard Library Quick Reference
http://www.halpernwightsoftware.com/stdlib−scratch/quickref.html

•

C++ STL from halper http://www.halpernwightsoftware.com/stdlib−scratch/quickref.html•

13.5 C++ Usenet Newsgroups

C++ newsgroups : comp.lang.c++.announce•
C++ newsgroups : comp.lang.c++.*•
C++ newsgroups : http://marshall−cline.home.att.net/cpp−faq−lite•

13.6 Java like API

Visit the following sites for Java like API for C++

Java utils in C++ http://www.pulsar.org/users/ej/archive/oop•
PhD Thesis book Java API in C++ http://www.pulsar.org/archive/phd/ejphd•

 C++ Programming HOW−TO

13.2 C++ Tutorials 32

http://www.infoseek.com
http://www.excite.com
http://www.mamma.com
http://www.xploiter.com/programming/c/index.shtml
http://www.cplusplus.com/doc/tutorial
http://www.csa.iisc.ernet.in/Documentation/Tutorials/StyleGuides/c++-style.html
http://wilma.cs.brown.edu/courses/cs032/resources/C++tutorial.html
http://home.msuiit.edu.ph/~ddd/tutorials/cpp/cpplist.htm
http://osiris.sunderland.ac.uk/~cs0pdu/pub/com365/Sched3/iocpp.html
http://www.enteract.com/~bradapp/links/cplusplus-links.html
www.snippets.org
http://www.mathtools.net
http://www.cs.jcu.edu.au/~david/C++SYNTAX.html
http://www.halpernwightsoftware.com/stdlib-scratch/quickref.html
http://www.halpernwightsoftware.com/stdlib-scratch/quickref.html
news:comp.lang.c++.announce
news:comp.lang.c++.*
http://marshall-cline.home.att.net/cpp-faq-lite
http://www.pulsar.org/users/ej/archive/oop
http://www.pulsar.org/archive/phd/ejphd

Java−like library Jakelib at http://www.jakelib.org. The version 2 of Jakelib uses Boehm's gc and is a
lot more Java−like. Written by Florian.

•

14. C++ Coding Conventions

Coding convention is very essential for readability and maintenance of programs. And it also greatly
improves the productivity of the programmer. Coding convention is required for good coding discipline. The
following is suggested − inside class definition:

All public variables must begin with m like mFooVar. The m stands for member.•
All protected variables must begin with mt, like mtFooVar and methods with t, like tFooNum().
The t stands for protected.

•

All private variables must begin with mv, like mvFooVar and methods with v, like vFooLone(). The
v stands for private.

•

All public, protected and private variables must begin with uppercase after m like F in mFooVar. •
All pointer variables must be prefixed with p, like

Public variables mpFooVar and methods like FooNum()♦
Protected variables mtpFooVar and methods with t like tFooNum()♦
Private variables mvpFooVar and methods with v like vFooNum()♦

•

Uniform world−wide coding convention for C++ language will help better programming.

In the sample code given below t stands for protected, v stands for private, m stands for
member−variable and p stands for pointer.

class SomeFunMuncho
{
 public:
 int mTempZimboniMacho; // Only temporary variables should be public as per OOP
 float *mpTempArrayNumbers;
 int HandleError();
 float getBonyBox(); // Public accessor as per OOP design
 float setBonyBox(); // Public accessor as per OOP design
 protected:
 float mtBonyBox;
 int *mtpBonyHands;
 char *tHandsFull();
 int tGetNumbers();
 private:
 float mvJustDoIt;
 char mvFirstName[30];
 int *mvpTotalValue;
 char *vSubmitBars();
 int vGetNumbers();
};

When your program grows by millions of lines of code, then you will greatly appreciate the naming
convention as above. The readability of code improves, because just by looking at the variable name like
mvFirstName you can tell that it is member of a class and is a private variable.

Visit the C++ Coding Standards URLs

 C++ Programming HOW−TO

14. C++ Coding Conventions 33

http://www.jakelib.org
mailto:florian@donuz.de

C++ FAQ Lite − Coding standards http://www.parashift.com/c++−faq−lite/coding−standards.html•
Rice university coding standard http://www.cs.rice.edu/~dwallach/CPlusPlusStyle.html•
Identifiers to avoid in C++ Programs http://oakroadsystems.com/tech/cppredef.htm•
Coding standards from Possibility http://www.possibility.com/Cpp/CppCodingStandard.html and
mirror site

•

Coding standards for Java and C++ from Ambysoft
http://www.ambysoft.com/JavaCodingStandards.html

•

Rules and recommendations http://www.cs.umd.edu/users/cml/cstyle/•
Indent and annotate http://www.cs.umd.edu/users/cml/cstyle/indhill−annot.html•
Elemental rules http://www.cs.umd.edu/users/cml/cstyle/Ellemtel−rules.html•
C++ style doc http://www.cs.umd.edu/users/cml/cstyle/Wildfire−C++Style.html•
C++ Coding Standards by Brett Scolcum http://www.skypoint.com/~slocum/prog/cppstds.html•
Logikos C++ Coding Standards http://www.logikos.com/standards/cpp_std.html•
NRad C++ coding standards http://cadswes.colorado.edu/~billo/standards/nrad•
BEJUG C++ coding standards http://www.meurrens.org/ip−Links/java/joodcs/ToddHoff.html•
Arctic Labs coding standards http://www.arcticlabs.com/codingstandards•

See also

For rapid navigation with ctags Vim color text editor•
To improve productivity see C++ Beautifier HOWTO•

15. C++ Scripting Languages

The major disadvantage of C++ is that you must recompile and link the object files to create an executable
anytime you make a small change. The compile/link/debug cycles take away a lot of time and is quite
unproductive. Since modern CPU's and RAM are becoming extremely fast and cheap, it is sometimes better
to spend more money on hardware and use scripting languages for development.

15.1 PIKE & PHP (C/C++ Scripting Languages)

The scripting languages like PHP or PIKE eliminates the linking and re−compiling and will really speed up
the development process.

As memory (RAM) prices are dropping and CPU speeds are increasing, scripting languages like PHP or
PIKE will EXPLODE in popularity. PHP or PIKE will become most widely used scripting language as it is
object oriented and it's syntax is very identical to that of C/C++.

Programming productivity will increase by five times by using the PHP or Pike C++ scripting language. And
PHP or PIKE is very useful for 'proof of concept' and developing prototypes rapidly.

PHP is exploding in popularity for general purpose programming and for web development. PHP may
become the most widely used scripting language in near future. PHP is at
http://www.linuxdoc.org/HOWTO/PHP−HOWTO.html.

The Pike is at http://pike.roxen.com and at http://www.roxen.com.

The Roxen Web server is completely written in Pike, which demonstrates how powerful Pike is. Pike runs

 C++ Programming HOW−TO

15. C++ Scripting Languages 34

http://www.parashift.com/c++-faq-lite/coding-standards.html
http://www.cs.rice.edu/~dwallach/CPlusPlusStyle.html
http://oakroadsystems.com/tech/cppredef.htm
http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html
http://www.ambysoft.com/JavaCodingStandards.html
http://www.cs.umd.edu/users/cml/cstyle/
http://www.cs.umd.edu/users/cml/cstyle/indhill-annot.html
http://www.cs.umd.edu/users/cml/cstyle/Ellemtel-rules.html
http://www.cs.umd.edu/users/cml/cstyle/Wildfire-C++Style.html
http://www.skypoint.com/~slocum/prog/cppstds.html
http://www.logikos.com/standards/cpp_std.html
http://cadswes.colorado.edu/~billo/standards/nrad
http://www.meurrens.org/ip-Links/java/joodcs/ToddHoff.html
http://www.arcticlabs.com/codingstandards
http://www.linuxdoc.org/LDP/HOWTO/Vim-HOWTO.html
http://www.linuxdoc.org/LDP/HOWTO/C-C++Beautifier-HOWTO.html
http://www.linuxdoc.org/HOWTO/PHP-HOWTO.html
http://pike.roxen.com
http://www.roxen.com

much faster than Java for some operations and is quite efficient in using memory resources.

15.2 SoftIntegration Ch (C/C++ Scripting Language)

If you want commercial scripting language, get the 'Ch scripting' product from SoftIntegration corporation at
http://www.softintegration.com.

The scripting language environment called Ch is a superset of C with high−level extensions, and salient
features from C++ and other languages so that users can learn the language once and use it anywhere for
almost any programming purposes. This C−compatible scripting language environment is also a middleware
serving as crucial software infrastructure for running portable applications in heterogeneous platforms. The
portable Ch code can be deployed safely over the internet or intranets to run anywhere ranging from
supercomputers, workstations, PCs, Palm Pilots, PDA, to non−traditional computing devices such as CNC
machines, robots, TVs, refrigerators, among others.

15.3 PHP (C++ Scripting Language)

PHP is hypertext−preprocessor scripting language and is very rapidly evolving and getting object oriented
features. It has the "class" keyword through which it tries to implement object oriented scripting. May be in
near future PHP will mature rapidly to become a robust scripting language for object oriented projects. In
future it will tackle both the web applications and general purpose applications. Why have different scripting
languages for web and general applications, instead just use PHP for both. PHP is at
http://www.linuxdoc.org/HOWTO/PHP−HOWTO.html.

16. Templates

Templates is a feature in C++ which enables generic programming, with templates code−reuse becomes
much easier.

Consider this simple example:

#include <string>
#include <iostream>

void printstring(const std::string& str) {
 std::cout << str << std::endl;
}

int main()
{
 std::string str("Hello World");
 printstring(str);
}

Our printstring() takes a std::string as its first argument, therefor it can only print strings. Therefor, to print
a character array, we would either overload the function or create a function with a new name.

This is bad, since the implementation of the function is now duplicated, maintainability becomes harder.

 C++ Programming HOW−TO

15.2 SoftIntegration Ch (C/C++ Scripting Language) 35

http://www.softintegration.com
http://www.linuxdoc.org/HOWTO/PHP-HOWTO.html

With templates, we can make this code re−useable, consider this function:

template<typename T>
void print(const T& var) {
 std::cout << var << std::endl;
}

The compiler will automatically generate the code for whatever type we pass to the print function. This is the
major advantage of templates. Java doesn't have templates, and therefor generic programming and code reuse
is harder in Java.

References:

http://babbage.cs.qc.edu/STL_Docs/templates.htm Mirror at:
http://www.mike95.com/c_plusplus/tutorial/templates

•

This tells about #pragma template : −
http://www.dgp.toronto.edu/people/JamesStewart/270/9697f/notes/Nov25−tut.html

•

Very GOOD site:
http://www.cplusplus.com/doc/tutorial/tut5−1.html http://www.cplusplus.com/doc/tutorial

•

For certification of C++: goto http://examware.com and click on "Tutorials" and then C/C++ button •

C++ Open books: http://www.softpanorama.org/Lang/cpp.shtml and click on tutorials •

Templates tutorial : http://www.infosys.tuwien.ac.at/Research/Component/tutorial/prwmain.htm•

17. STL References

Please visit the following sites for STL:

Very good intro to iterators http://www.cs.trinity.edu/~joldham/1321/lectures/iterators/•
Intro to STL SGI http://www.sgi.com/tech/stl/stl_introduction.html•
Mumits STL Newbie guide (a bit outdated)
http://www.xraylith.wisc.edu/~khan/software/stl/STL.newbie.html

•

ObjectSpace examples: ObjectSpace has contributed over 300 examples to the public domain and
these are a very good start for beginners. ftp://butler.hpl.hp.com/stl/examples.zip

•

Joseph Y. Laurino's STL page. http://weber.u.washington.edu/~bytewave/bytewave_stl.html•
Marian Corcoran's STL FAQ. ftp://butler.hpl.hp.com/stl/stl.faq•

STL tutorials:

Phil Ottewell's STL Tutorial − http://www.yrl.co.uk/~phil/stl/stl.htmlx•
Good, but outdated doc − http://www.decompile.com/html/tut.html Mirror:
http://mip.ups−tlse.fr/~grundman/stl−tutorial/tutorial.html

•

The Code Project, introduction to C++/STL/MFC•

 C++ Programming HOW−TO

 17. STL References 36

http://babbage.cs.qc.edu/STL_Docs/templates.htm
http://www.mike95.com/c_plusplus/tutorial/templates
http://www.dgp.toronto.edu/people/JamesStewart/270/9697f/notes/Nov25-tut.html
http://www.cplusplus.com/doc/tutorial/tut5-1.html
http://www.cplusplus.com/doc/tutorial
http://examware.com
http://www.softpanorama.org/Lang/cpp.shtml
http://www.infosys.tuwien.ac.at/Research/Component/tutorial/prwmain.htm
http://www.cs.trinity.edu/~joldham/1321/lectures/iterators/
http://www.sgi.com/tech/stl/stl_introduction.html
http://www.xraylith.wisc.edu/~khan/software/stl/STL.newbie.html
ftp://butler.hpl.hp.com/stl/examples.zip
http://weber.u.washington.edu/~bytewave/bytewave_stl.html
ftp://butler.hpl.hp.com/stl/stl.faq
http://www.yrl.co.uk/~phil/stl/stl.htmlx
http://www.decompile.com/html/tut.html
http://mip.ups-tlse.fr/~grundman/stl-tutorial/tutorial.html

http://www.codeproject.com/cpp/stlintroduction.asp
C++ Standard Template Library, another great tutorial, by Mark Sebern
http://www.msoe.edu/eecs/cese/resources/stl/index.htm

•

Technical University Vienna by Johannes Weidl http://dnaugler.cs.semo.edu/tutorials/stl mirror
http://www.infosys.tuwien.ac.at/Research/Component/tutorial/prwmain.htm

•

Main STL sites:

C++ STL from SGI http://www.sgi.com/tech/stl•
C++ STL from RPI univ http://www.cs.rpi.edu/projects/STL/htdocs/stl.html•
C++ STL site ODP for STL and the mirrorsite•
STL for C++ Programmers http://userwww.econ.hvu.nl/~ammeraal/stlcpp.html•
C++ STL from halper http://www.halpernwightsoftware.com/stdlib−scratch/quickref.html•

17.1 Overview of the STL

The STL offers the programmer a number of useful data structures and algorithms. It is made up by the
following components.

Containers. There are two types:
Sequential. This group comprises the vector, list and deque types. ♦
Sorted Associative. This group comprises the set, map, multiset and multimap types. ♦

•

Iterators. These are pointer like objects that allow the user to step through the contents of a container. •

Generic Algorithms. The STL provides a wide range of efficently implemented standard algorithms
(for example find, sort and merge) that work with the container types. (Some of the containers have
special purpose implementations of these algorithms as member functions.)

•

Function Objects. A function object is an instance of a class that provides a definition of operator().
This means that you can use such an object like a function.

•

Adaptors. The STL provides
Container adaptors that allow the user to use, say, a vector as the basis of a stack. ♦
Function adaptors that allow the user to construct new function objects from existing
function objects.

♦

•

Allocators. Every STL container class uses an Allocator class to hold information about the memory
model the program is using. I shall totally ignore this aspect of the STL.

•

I will be considering the use of the vector, list, set and map containers. To make use of these containers you
have to be able to use iterators so I shall have something to say about STL iterators. Using the set and map
containers can mean having to supply a simple function object to the instantiation so I shall also have
something to say about function objects. I will only briefly mention the algorithms supplied by the STL. I
will not mention adaptors at all.

I have taken liberties with some of the types of function arguments −− for example most of the integer
arguments referred to in what follows actually have type size_type which is typedef'ed to an appropriate basic
type depending on the allocation model being used. If you want to see the true signatures of the various
functions discussed have a look at the Working Paper or the header files.

 C++ Programming HOW−TO

17.1 Overview of the STL 37

http://www.codeproject.com/cpp/stlintroduction.asp
http://www.msoe.edu/eecs/cese/resources/stl/index.htm
http://dnaugler.cs.semo.edu/tutorials/stl
http://www.infosys.tuwien.ac.at/Research/Component/tutorial/prwmain.htm
http://www.sgi.com/tech/stl
http://www.cs.rpi.edu/projects/STL/htdocs/stl.html
http://dmoz.org/Computers/Programming/Languages/C++/Class_Libraries/STL
http://dir.lycos.com/Computers/Programming/Languages/C%2B%2B/Class_Libraries/STL
http://userwww.econ.hvu.nl/~ammeraal/stlcpp.html
http://www.halpernwightsoftware.com/stdlib-scratch/quickref.html

There are a number of utility classes supplied with the STL. The only one of importance to us is the pair
class. This has the following definition:

template<class T1, class T2>
class pair {
public:
 T1 first;
 T2 second;
 pair(const T1& a, const T2& b) : first(a), second(b) {}

};

and there is a convenient function make_pair with signature:

pair<T1,T2> make_pair(const T1& f, const T2&,s)

as well as implementations of operator== and operator < . There is nothing complicated about this template
class and you should be able to use it without further guidance. To use it #include the header file <utility>. It
crops up in a number of places but particularly when using the set and map classes.

17.2 Header Files

To use the various bits of the STL you have to #include the appropriate header files. If your compiler is not
standard compliant, this may differ, but a standard compliant compiler (like g++), would have these:

<vector> for the vector type. •
<list> for the list type. •
<set> for the set type. •
<map> for the map type. •
<algorithm> for access to the generic algorithms. •

Note that headers in the Standard C++ Library is without a .h suffix. If you use an old or poor compiler, the
above headers might fail, if then, you can try the version with the .h suffix, or better yet; get another
compiler.

17.3 The Container Classes Interface

The container classes have many member functions that have the same names. These functions provide the
same (or very similar) interface for each of the classes (though, of course, the implementations will be
different). The following table lists the functions that we shall consider in more detail. A star opposite a
function name indicates that the container type heading the column provides a member function of that name.

Operation
Purpose vector list set map

== comparison * * * *

 C++ Programming HOW−TO

17.2 Header Files 38

< comparison * * * *

begin iterator * * * *

end iterator * * * *

size no. of elements * * * *

empty is container empty * * * *

front first element * *

back last element * *

[]
element
access/modification

* *

insert insert element(s) * * * *

push_back insert new last element* *

push_front insert new first element *

erase remove element(s) * * * *

pop_back remove last element * *

pop_front remove first element *

Container
Class
Interface

If the following discussion leaves something unclear (and it will) you can always write a small test program
to investigate how some function or feature behaves.

17.4 Vectors

A vector is an array like container that improves on the C++ array types. In particular it is not necessary to
know how big you want the vector to be when you declare it, you can add new elements to the end of a vector
using the push_back function. (In fact the insert function allows you insert new elements at any position of
the vector, but this is a very inefficient operation −− if you need to do this often consider using a list instead).

Constructing Vectors

vector is a class template so that when declaring a vector object you have to state the type of the objects the
vector is to contain. For example the following code fragment

vector<int> v1;
vector<string> v2;
vector<FiniteAutomaton> v3;

declares that v1 is a vector that holds integers, v2 a vector that holds strings and v3 holds objects of type
FiniteAutomaton (presumably an user defined class type). These declarations do not say anything about how
large the vectors are to be (implementations will use a default starting size) and you can grow them to as

 C++ Programming HOW−TO

17.4 Vectors 39

large as you require.

You can give an initial size to a vector by using a declaration like

vector<char> v4(26);

which says that v4 is to be vector of characters that initially has room for 26 characters. There is also a way to
initialise a vector's elements. The declaration

vector<float> v5(100,1.0);

says that v5 is a vector of 100 floating point numbers each of which has been initialised to 1.0.

Checking Up on Your Vector

Once you have created a vector you can find out the current number of elements it contains by using the
size function. This function takes no arguments and returns an integer (strictly a value of type size_type, but
this gets converted to an integer) which says how many elements there are in the vector. What will be printed
out by the following small program?

<vector−size.cpp>=
#include <iostream>
#include <vector>

using namespace std;

int main()
{
 vector<int> v1;
 vector<int> v2(10);
 vector<int> v3(10,7);

 cout << "v1.size() returns " << v1.size() << endl;
 cout << "v2.size() returns " << v2.size() << endl;
 cout << "v3.size() returns " << v3.size() << endl;
}

To check on whether your vector is empty or not you can use the empty function. This takes no arguments
and returns a boolean value, true if the vector is empty, false if it is not empty. What will be printed out by
the following small program (true prints as 1 and false prints as 0)?

<vector−empty.cpp>=
#include <iostream>
#include <vector>

using namespace std;

 C++ Programming HOW−TO

Checking Up on Your Vector 40

int main()
{
 vector<int> v1;
 vector<int> v2(10);
 vector<int> v3(10,7);

 cout << "v1.empty() has value " << v1.empty() << endl;
 cout << "v2.empty() has value " << v2.empty() << endl;
 cout << "v3.empty() has value " << v3.empty() << endl;
}

Accessing Elements of a Vector

You can access a vector's elements using operator[]. Thus, if you wanted to print out all the elements in a
vector you could use code like

vector<int> v;
// ...
for (int i=0; i<v.size(); i++)
 cout << v[i];

(which is very similar to what you might write for a builtin array).

You can also use operator[] to set the values of the elements of a vector.

vector<int> v;
// ...
for (int i=0; i<v.size(); i++)
 v[i] = 2*i;

The function front gives access to the first element of the vector.

vector<char> v(10,'a');
// ...
char ch = v.front();

You can also change the first element using front.

vector<char> v(10,'a');
// ...
v.front() = 'b';

The function back works the same as front but for the last element of the vector.

 C++ Programming HOW−TO

Accessing Elements of a Vector 41

vector<char> v(10,'z');
// ...
char last = v.back();
v.back() = 'a';

Here is a simple example of the use of [].

<vector−access.cpp>=
#include <vector>
#include <iostream>

using namespace std;

int main()
{
 vector<int> v1(5);
 int x;
 cout << "Enter 5 integers (seperated by spaces):" << endl;
 for (int i=0; i<5; i++)
 cin >> v1[i];
 cout << "You entered:" << endl;
 for (int i=0; i<5; i++)
 cout << v1[i] << ' ';
 cout << endl;
}

Inserting and Erasing Vector Elements

Along with operator[] as described above there are a number of other ways to change or access the elements
in a vector.

push_back will add a new element to the end of a vector. •
pop_back will remove the last element of a vector. •
insert will insert one or more new elements, at a designated position, in the vector. •
erase will remove one or more elements from a vector between designated positions. •

Note that insert and erase are expensive operations on vectors. If you use them a lot then you should consider
using the list data structure for which they are more efficient.

<vector−mod.cpp>=
#include <iostream>
#include <vector>

using namespace std;

int main()
{
 vector<int> v;

 for (int i=0; i<10; i++) v.push_back(i);
 cout << "Vector initialised to:" << endl;
 for (int i=0; i<10; i++) cout << v[i] << ' ' ;

 C++ Programming HOW−TO

Inserting and Erasing Vector Elements 42

 cout << endl;

 for (int i=0; i<3; i++) v.pop_back();
 cout << "Vector length now: " << v.size() << endl;
 cout << "It contains:" << endl;
 for (int i=0; i<v.size(); i++) cout << v[i] << ' ';
 cout << endl;

 int a1[5];
 for (int i=0; i<5; i++) a1[i] = 100;

 v.insert(& v[3], & a1[0],& a1[3]);
 cout << "Vector now contains:" << endl;
 for (int i=0; i<v.size(); i++) cout << v[i] << ' ';
 cout << endl;

 v.erase(& v[4],& v[7]);
 cout << "Vector now contains:" << endl;
 for (int i=0; i<v.size(); i++) cout << v[i] << ' ';
 cout << endl;
}

In the above a vector v has been declared then initialised using push_back. Then some elements have been
trimmed off it's end using pop_back. Next an ordinary integer array has been created and then some of its
elements inserted into v using insert. Finally erase has been used to remove elements from v. The functions
used above take arguments as follows.

push_back takes a single argument of the type of the elements held in the vector. •
pop_back takes no arguments. It is a mistake to use pop_back on an empty vector. •
insert has three forms:

insert(pos, T& x) which will insert the single element x at position pos in the vector. ♦
insert(pos, start, end) which inserts a sequence of elements from some other container at
position pos in the vector. The

♦

sequence of elements is identified as starting at the start element and continuing to, but not
including, the end element.

♦

insert(pos, int rep, T& x) inserts rep copies of x at position pos in the vector. ♦

•

As indicated in the code above the position pos should be the address of the element to insert at, whilst the
start and end arguments are likewise also addresses. (The true story is that they are iterators −− see next
subsection and following section).

erase has two forms (pos, start and end have the same types as for the insert function):
erase(pos) which will remove the element at position pos in the vector. ♦
insert(start,end) which will remove elements starting at position start upto, but not including,
the element at position end.

♦

•

Vector Iterators

The simple way to step through the elements of a vector v is as we have done above:

for (int i=0; i<v.size(); i++) { ... v[i] ... }

 C++ Programming HOW−TO

Vector Iterators 43

Another way is to use iterators. An iterator can be thought of as a pointer into the container, incrementing the
iterator allows you to step through the container. For container types other than vectors iterators are the only
way to step through the container.

For a vector containing elements of type T:

vector<T> v;

an iterator is declared as follows:

vector<T>::iterator i;

Such iterators are constructed and returned by the functions begin() and end(). You can compare two iterators
(of the same type) using == and !=, increment using ++ and dereference using *. [In fact vector iterators
allow more operations on them − see next section for more information].

Here is an illustration of how to use iterators with vectors.

<vector−iterator.cpp>=
#include <iostream>
#include <vector>

using namespace std;

int main()
{
 vector<int> v(10);
 // first is ``less'' than the second

 int j = 1;

 vector<int>::iterator i;

 // Fill the vector v with integers 1 to 10.
 i = v.begin();
 while (i != v.end())
 {
 *i = j;
 j++;
 i++;
 }

 // Square each element of v.
 for (i=v.begin(); i!=v.end(); i++) *i = (*i) * (*i);

 // Print out the vector v.
 cout << "The vector v contains: ";
 for (i=v.begin(); i!=v.end(); i++) cout << *i << ' ';
 cout << endl;

}

 C++ Programming HOW−TO

Vector Iterators 44

Note how *i can be used on the left−hand side of an assignment statement so as to update the element pointed
at by i, and on the right−hand side to access the current value.

Comparing Vectors

You can compare two vectors using == and <. == will return true only if both vectors have the same number
of elements and all elements are equal. The < functions performs a lexicographic comparison of the two
vectors. This works by comparing the vectors element by element. Suppose we are comparing v1 and v2 (that
is v1 < v2?). Set i=0. If v1[i] < v2[i] then return true, if v1[i] > v2[i] then return false, otherwise increment i
(that is move on to the next element). If the end of v1 is reached before v2 return true, otherwise return false.
Lexicographic order is also known as dictionary order. Some examples:

(1,2,3,4) < (5,6,7,8,9,10) is true.
(1,2,3) < (1,2,3,4) is true
(1,2,3,4) < (1,2,3) is false
(0,1,2,3) < (1,2,3) is true

The following code illustrates the third example above.

<vector−comp.cpp>=
#include <vector>
#include <iostream>

using namespace std;

int main()
{
 vector<int> v1;
 vector<int> v2;
 for (int i=0; i<4; i++) v1.push_back(i+1);
 for (int i=0; i<3; i++) v2.push_back(i+1);

 cout << "v1: ";
 for (int i=0; i<v1.size(); i++) cout << v1[i] << ' ';
 cout << endl;

 cout << "v2: ";
 for (int i=0; i<v2.size(); i++) cout << v2[i] << ' ';
 cout << endl;

 cout << "v1 < v2 is: " << (v1<v2 ? "true" : "false") << endl;
}

The comparison operators <= and >= also work.

17.5 Iterators and the STL

See the section STL References

 C++ Programming HOW−TO

Comparing Vectors 45

17.6 Lists

See the section STL References

17.7 Sets

The set container type allows an user to store and retrieve elements directly rather than through an index into
the container. The set container acts as a mathematical set in that it holds only distinct elements. However
unlike a mathematical set, elements in a set container are held in (an user−supplied) order. In practice this is
only a minor restriction on treating a set container as an implementation of the mathematical set abstract data
type, and it allows for a much more efficient implementation than an unordered approach.

Constructing Sets

Two template arguments are required to construct a set container −− the type of the objects the set is to
contain and a function object that can compare two elements of the given type, that is:

set<T, Compare> s;

(The declaration set < T > s should also be possible −− it would use a default template argument less < T > as
the second argument, but many C++ compilers (including g++) cannot as yet cope with default template
arguments.)

For simple types T we can use the function object less < T > (without having to worry about what a
``function object'' is), for example all the following are legal set declarations.

set<int, less<int> > s1;
set<double, less<double> > s2;
set<char, less<char> > s3;
set<string, less<string> > s4;

(Note that the space between the two final >'s in the template is required − otherwise the compiler will
interpret >> as the right shift operator.) In each of these cases the function object makes use of the operator <
as defined for the the underlying type (that is int, double, char and string).

The following code declares a set of integers, then adds some integers to the set using the insert method and
then prints out the set members by iterating through the set. You will note that the set's contents are printed
out in ascending order even though they were added in no particular order.

<set−construct1.cpp>=
#include <iostream>
#include <set>

using namespace std;

int main()

 C++ Programming HOW−TO

17.6 Lists 46

{
 set<int, less<int> > s;
 set<int, less<int> >::iterator i;

 s.insert(4);
 s.insert(0);
 s.insert(−9);
 s.insert(7);
 s.insert(−2);
 s.insert(4);
 s.insert(2);

 cout << "The set contains the elements: ";
 for (i=s.begin(); i!=s.end(); i++) cout << *i << ' ';
 cout << endl;
}

Note that 4 is added twice but only turns up once on the list of elements −− which is what one expects of a
set.

What are Function Objects?

One of the nifty features of C++ is the ability to overload operators, so that one can have + mean whatever
one likes for your newly designed class. One of the operators C++ allows you to overload is the function call
operator () and this allows you to create classes whose instances can behave like functions in many ways.
These are function objects.

Here is a simple example.

<function−object.cpp>=
#include <iostream>

using namespace std;

template<class T>
class square {
public:
 T operator()(T x) { return x*x; }
};
// This can be used with any T for which * is defined.

int main()
{
 // Create some function objects.
 square<double> f1;
 square<int> f2;

 // Use them.
 cout << "5.1^2 = " << f1(5.1) << endl;
 cout << "100^2 = " << f2(100) << endl;

 // The following would result in a compile time error.
 // cout << "100.1^2 = " << f2(100.1) << endl;
}

 C++ Programming HOW−TO

What are Function Objects? 47

Function objects are used in a number of places in the STL. In particular they are used when declaring sets
and maps.

The function object required for these purposes, let's suppose it is called comp, must satisfy the following
requirements.

If comp(x,y) and comp(y,z) are true for objects x, y and z then comp(x,z) is also true. 1.
comp(x,x) is false for every object x. 2.

If for any particular objects x and y, both comp(x,y) and comp(y,x) are false then x and y are deemed to be
equal.

This, in fact, is just the behaviour of the strictly−less−than relation (ie <) on numbers. The function object
less < T > used above is defined in terms of a < operator for the type T. It's definition can be thought of as
follows.

template<class T>
struct less {
 bool operator()(T x, T y) { return x<y; }
}

(The actual definition uses references, has appropriate const annotations and inherits from a template class
binary_function.)

This means that if the type T has operator < defined for it then you can use less < T > as the comparator when
declaring sets of T. You might still want to use a special purpose comparator if the supplied < operator is not
appropriate for your purposes. Here is another example. This defines a simple class with a definition of
operator < and a function object that performs a different comparison. Note that the overloaded < and ()
operators should be given const annotations so that the functions work correctly with the STL.

<set−construct2.cpp>=
#include <iostream>
#include <set>

using namespace std;

// This class has two data members. The overloaded operator< compares
// such classes on the basis of the member f1.
class myClass {
private:
 int f1;
 char f2;
public:
 myClass(int a, char b) : f1(a), f2(b) {}
 int field1() const { return f1; }
 char field2() const { return f2; }
 bool operator<(myClass y) const
 { return (f1<y.field1()); }
};

// This function object compares objects of type myClass on the basis
// of the data member f2.

 C++ Programming HOW−TO

What are Function Objects? 48

class comp_myClass {
public:
 bool operator()(myClass c1, myClass c2) const
 { return (c1.field2() < c2.field2()); }
};

int main()
{
 set<myClass, less<myClass> > s1;
 set<myClass, less<myClass> >::iterator i;
 set<myClass, comp_myClass> s2;
 set<myClass, comp_myClass>::iterator j;

 s1.insert(myClass(1,'a'));
 s2.insert(myClass(1,'a'));
 s1.insert(myClass(1,'b'));
 s2.insert(myClass(1,'b'));
 s1.insert(myClass(2,'a'));
 s2.insert(myClass(2,'a'));

 cout << "Set s1 contains: ";
 for (i=s1.begin(); i!=s1.end(); i++)
 {
 cout << "(" << (*i).field1() << ","
 << (*i).field2() << ")" << ' ';
 }
 cout << endl;

 cout << "Set s2 contains: ";
 for (j=s2.begin(); j!=s2.end(); j++)
 {
 cout << "(" << (*j).field1() << ","
 << (*j).field2() << ")" << ' ';
 }
 cout << endl;
}

The set s1 contains (1,a) and (2,a) as comparison is on the data member f1, so that (1,a) and (1,b) are deemed
the same element. The set s2 contains (1,a) and (1,b) as comparison is on the data member f2, so that (1,a)
and (2,a) are deemed the same element.

A Printing Utility

The way we have printed out the sets in the previous examples is a little awkward so the following header file
containing a simple overloaded version of operator<< has been written. It works fine for small sets with
simple element types.

<printset.h>=
#ifndef _PRINTSET_H
#define _PRINTSET_H

#include <iostream>
#include <set>

template<class T, class Comp>
std::ostream& operator<<(std::ostream& os, const std::set<T,Comp>& s)
{

 C++ Programming HOW−TO

A Printing Utility 49

 std::set<T,Comp>::iterator iter = s.begin();
 int sz = s.size();
 int cnt = 0;

 os << "{";
 while (cnt < sz−1)
 {
 os << *iter << ",";
 iter++;
 cnt++;
 }
 if (sz != 0) os << *iter;
 os << "}";

 return os;
}
#endif

The use here of << as an output routine for a set assumes that << has been defined for the set elements, and
uses this to print a comma delimited list of the set elements wrapped in curly braces. It will be used without
comment in the following examples.

How Many Elements?

You can determine if a set is empty or not by using the empty() method. You can find out how many
elements there are in a set by using the size() method. These methods take no arguments, empty() returns true
or false and size() returns an integer.

<set−size.cpp>=
#include <iostream>
#include <set>
#include "printset.h"

using namespace std;

int main()
{
 set<int, less<int> > s;

 cout << "The set s is "
 << (s.empty() ? "empty." : "non−empty.") << endl;
 cout << "It has " << s.size() << "elements." << endl;

 cout << "Now adding some elements... " << endl;

 s.insert(1);
 s.insert(6);
 s.insert(7);
 s.insert(−7);
 s.insert(5);
 s.insert(2);
 s.insert(1);
 s.insert(6);

 cout << "The set s is now
 << (s.empty() ? "empty." : "non−empty.") << endl;
 cout << "It has " << s.size() << "elements." << endl;

 C++ Programming HOW−TO

How Many Elements? 50

 cout << "s = " << s << endl;
}

Checking the Equality of Sets.

Two sets may be checked for equality by using ==. This equality test works by testing in order the
corresponding elements of each set for equality using T::operator==.

<set−equality.cpp>=
#include <iostream>
#include <set>
#include "printset.h"

using namespace std;

int main()
{
 set<int, less<int> > s1, s2 ,s3;

 for (int i=0; i<10; i++)
 {
 s1.insert(i);
 s2.insert(2*i);
 s3.insert(i);
 }

 cout << "s1 = " << s1 << endl;
 cout << "s2 = " << s2 << endl;
 cout << "s3 = " << s3 << endl;
 cout << "s1==s2 is: " << (s1==s2 ? true. : false.) << endl;
 cout << "s1==s3 is: " << (s1==s3 ? true. : false.) << endl;
}

It is also possible to compare two sets using <. The comparison s1 < s2 is true if the set s1 is
lexicographically less than the set s2, otherwise it is false.

Adding and Deleting Elements

The way to add elements to a set is to use the insert method (as we have done above). The way to delete
elements from a set is to use the erase method.

For a set holding elements of type T these methods come in following forms:

pair < iterator, bool> insert(T& x). This is the standard insert function. The return value may be
ignored or used to test if the insertion succeeded (that is the element was not already in the set). If the
insertion succeeded the boolean component will be true and the iterator will point at the just inserted
element. If the element is already present the boolean component will be false and the iterator will
point at the element x already present.

•

iterator insert(iterator position, T& x). This version of the insert function takes, in addition to the
element to insert, an iterator stating where the insert function should begin to search. The returned

•

 C++ Programming HOW−TO

Checking the Equality of Sets. 51

iterator points at the newly inserted element, (or the already present element).

int erase(T& x). This version of the erase method takes an element to delete and returns 1 if the
element was present (and removes it) or 0 if the element was not present.

•

void erase(iterator position). This version takes an iterator pointing at some element in the set and
removes that element.

•

void erase(iterator first, iterator last). This version takes two iterators pointing into the set and
removes all the elements in the range [first,last] .

•

The following example illustrates these various forms.

<set−add−delete.cpp>=
#include <iostream>
#include <set>
#include "printset.h"

using namespace std;

int main()
{
 set<int, less<int> > s1;

 // Insert elements in the standard fashion.
 s1.insert(1);
 s1.insert(2);
 s1.insert(−2);

 // Insert elements at particular positions.
 s1.insert(s1.end(), 3);
 s1.insert(s1.begin(), −3);
 s1.insert((s1.begin()++)++, 0);

 cout << "s1 = " << s1 << endl;

 // Check to see if an insertion has been successful.
 pair<set<int, less<int> >::iterator,bool> x = s1.insert(4);
 cout << "Insertion of 4 " << (x.second ? worked. : failed.)
 << endl;
 x = s1.insert(0);
 cout << "Insertion of 0 " << (x.second ? worked. : failed.)
 << endl;

 // The iterator returned by insert can be used as the position
 // component of the second form of insert.
 cout << "Inserting 10, 8 and 7." << endl;
 s1.insert(10);
 x=s1.insert(7);
 s1.insert(x.first, 8);

 cout << "s1 = " << s1 << endl;

 // Attempt to remove some elements.
 cout << "Removal of 0 " << (s1.erase(0) ? worked. : failed.)
 << endl;
 cout << "Removal of 5 " << (s1.erase(5) ? worked. : failed.)
 << endl;

 C++ Programming HOW−TO

Checking the Equality of Sets. 52

 // Locate an element, then remove it. (See below for find.)
 cout << "Searching for 7." << endl;
 set<int,less<int> >::iterator e = s1.find(7);
 cout << "Removing 7." << endl;
 s1.erase(e);

 cout << "s1 = " << s1 << endl;

 // Finally erase everything from the set.
 cout << "Removing all elements from s1." << endl;
 s1.erase(s1.begin(), s1.end());
 cout << "s1 = " << s1 << endl;
 cout << "s1 is now " << (s1.empty() ? empty. : non−empty.)
 << endl;
}

Finding Elements

We mention two member functions that can be used to test if an element is present in a set or not.

iterator find(T& x). This searches for the element x in the set. If x is found it returns an iterator
pointing at x otherwise it returns end().

•

int count(T& x). This returns 1 if it finds x in the set and 0 otherwise. (The count function for
multisets returns the number of copies of the element in the set which may be more than 1. Hence, I
guess, the name of the function.)

•

The use of find has been illustrated above. We could use count to write a simple template based set
membership function. (This should also provide a version that takes a reference to the argument x.)

<setmember.h>=
#ifndef _SETMEMBER_H
#define _SETMEMBER_H
#include <set>

template<class T, class Comp>
bool member(T x, std::set<T,Comp>& s)
{
 return (s.count(x)==1 ? true : false);
}
#endif

Which might be used as follows.

<set−membership.cpp>=
#include <iostream>
#include <set>
#include "printset.h"
#include "setmember.h"

using namespace std;

int main()
{
 set<int, less<int> > s;
 for (int i= 0; i<10; i++) s.insert(i);

 C++ Programming HOW−TO

Finding Elements 53

 cout << "s = " << s << endl;
 cout << "1 is " << (member(1,s) ? : not) << " a member of s "
 << endl;
 cout << "10 is " << (member(10,s) ? : not) << " a member of s "
 << endl;
}

Set Theoretic Operations

The STL supplies as generic algorithms the set operations includes, union, intersection, difference and
symmetric diffference. To gain access to these functions you need to include algo.h. (In what follows iter
stands for an appropriate iterator).

bool includes(iter f1,iter l1,iter f2,iter l2). •

This checks to see if the set represented by the range [f2,l2] is included in the set [f1,l1]. It returns
true if it is and false otherwise. So to check to see if one set is included in another you would use

includes(s1.begin(), s1.end(), s2.begin(), s2.end())

The includes function checks the truth of 3#3 (that is of 4#4). This function assumes that the sets are
ordered using the comparison operator <. If some other comparison operator has been used this needs
to be passed to includes as an extra (function object) argument after the other arguments.

iter set_union(iter f1,iter l1,iter f2,iter l2,iter result). •

This forms the union of the sets represented by the ranges [f1,l1] and [f2,l2]. The argument result is
an output iterator that points at the start of the set that is going to hold the union. The return value of
the function is an output iterator that points at the end of the new set.

The fact that the result argument is an output iterator means that you cannot use set_union in the following,
natural, fashion:

 set<int, less<int> > s1, s2, s3;
 // Add some elements to s1 and s2 ...
 // Then form their union. (This does not work!)
 set_union(s1.begin(), s1.end(),
 s2.begin(), s2.end(),
 s3.begin());

The reason is that begin() (also end()) when used with sets (or maps) returns a (constant) input iterator. This
type of iterator allows you to access elements of the set for reading but not writing. (And this is a Good Thing
since if you could assign to a dereferenced iterator (as in (*i)= ...) then you could destroy the underlying order
of the set.)

The solution is to use an insert iterator based on the set type. This, basically, converts an assignment
(*i)=value (which is illegal) into a (legal) insertion s.insert(i,value) (where s is the set object that the iterator i
is pointing into). It is used as follows:

 C++ Programming HOW−TO

Set Theoretic Operations 54

 // Typedef for convenience.
 typedef set<int, less<int> > intSet;
 intSet s1, s2, s3;
 // Add some elements to s1 and s2 ...
 // Then form their union.
 set_union(s1.begin(), s1.end(),
 s2.begin(), s2.end(),
 insert_iterator<intSet>(s3,s3.begin()));

Here is an example illustrating all these operations.

<set−theory.cpp>=
#include <iostream>
#include <set>
#include <algorithm>
#include <iterator>
#include "printset.h"

using namespace std;

int main()
{
 typedef set<int, less<int> > intSet;

 intSet s1, s2, s3, s4;

 for (int i=0; i<10; i++)
 { s1.insert(i);
 s2.insert(i+4);
 }
 for (int i=0; i<5; i++) s3.insert(i);

 cout << "s1 = " << s1 << endl;
 cout << "s2 = " << s2 << endl;
 cout << "s3 = " << s3 << endl;

 // Is s1 a subset of s2?
 bool test = includes(s2.begin(),s2.end(),s1.begin(),s1.end());
 cout << "s1 subset of s2 is " << (test ? true. : false.) << endl;

 // Is s3 a subset of s1?
 test = includes(s1.begin(),s1.end(),s3.begin(),s3.end());
 cout << "s3 subset of s1 is " << (test ? true. : false.) << endl;

 // Form the union of s1 and s2.
 set_union(s1.begin(), s1.end(), s2.begin(), s2.end(),
 insert_iterator<intSet>(s4,s4.begin()));
 cout << "s1 union s2 = " << s4 << endl;

 // Erase s4 and form intersection of s1 and s2. (If we don't erase
 // s4 then we will get the previous contents of s4 as well).
 s4.erase(s4.begin(),s4.end());
 set_intersection(s1.begin(), s1.end(), s2.begin(), s2.end(),
 insert_iterator<intSet>(s4,s4.begin()));
 cout << "s1 intersection s2 = " << s4 << endl;

 // Now set difference.
 s4.erase(s4.begin(),s4.end());
 set_difference(s1.begin(), s1.end(), s2.begin(), s2.end(),

 C++ Programming HOW−TO

Set Theoretic Operations 55

 insert_iterator<intSet>(s4,s4.begin()));
 cout << "s1 minus s2 = " << s4 << endl;

 // Set difference is not symmetric.
 s4.erase(s4.begin(),s4.end());
 set_difference(s2.begin(), s2.end(), s1.begin(), s1.end(),
 insert_iterator<intSet>(s4,s4.begin()));
 cout << "s2 minus s1 = " << s4 << endl;

 // Finally symmetric difference.
 s4.erase(s4.begin(),s4.end());
 set_symmetric_difference(s1.begin(), s1.end(), s2.begin(), s2.end(),
 insert_iterator<intSet>(s4,s4.begin()));
 cout << "s1 symmetric_difference s2 = " << s4 << endl;

 // Which is symmetric!
 s4.erase(s4.begin(),s4.end());
 set_symmetric_difference(s2.begin(), s2.end(), s1.begin(), s1.end(),
 insert_iterator<intSet>(s4,s4.begin()));
 cout << "s2 symmetric_difference s1 = " << s4 << endl;
}

17.8 Maps

See the section STL References

17.9 STL Algorithms

See the section

18. Threads in C++

IBM pthread User Guide, Thread concepts, API reference
http://www.as400.ibm.com/developer/threads/uguide/document.htm and mirror site is at IBM main
site

•

QpThread Library for C++ provides object oriented framework in C++ for threads and Unix signals
on top of system level threads (currently POSIX Threads) http://lin.fsid.cvut.cz/~kra/index.html

•

ThreadJack supports Java−like multi−thread programming model with platform independent C++
class library http://www.esm.co.jp/divisions/open−sys/ThreadJack/index−e.html and here is the
download−site

•

APE is the "APE Portable Environment" and class libraries for writing portable threaded servers in
C++, under UNIX (pthread) and Win32 API's. APE provides portable class abstraction for threads,
sockets, file handling, and synchronization objects. The goal of APE is to make writing threaded
servers in C++ both practical and convient, even for small and simple projects, and hence simplicity
and low runtime overhead are design goals http://www.voxilla.org/projects/projape.html

•

Portabale Thread Lib http://www.media.osaka−cu.ac.jp/~k−abe/PTL•

 C++ Programming HOW−TO

17.8 Maps 56

http://www.as400.ibm.com/developer/threads/uguide/document.htm
http://java.icmc.sc.usp.br/library/books/ibm_pthreads/document.htm
http://java.icmc.sc.usp.br/library/books/ibm_pthreads/document.htm
http://lin.fsid.cvut.cz/~kra/index.html
http://www.esm.co.jp/divisions/open-sys/ThreadJack/index-e.html
http://www.esm.co.jp/divisions/open-sys/ThreadJack/source-dl-e.html
http://www.voxilla.org/projects/projape.html
http://www.media.osaka-cu.ac.jp/~k-abe/PTL

Thread−Recyling in C++ http://www.sigs.de/html/kuhlmann.html•

18.1 Threads Tutorial

You can download all the tutorials in one file from http://www.milkywaygalaxy.freeservers.com and
click on "Source code C++ Programming howto".

•

Threads tutorial is at http://www.math.arizona.edu/swig/pthreads/threads.html•

HERT tutorial at http://www.hert.org/docs/tutorials, go here to search for "Threads". •

Intro to threads at linuxjournal•

North Arizona Univ NAU•

POSIX threads Acctcom multi−thread•

18.2 Designing a Thread Class in C++

This section is written by Ryan Teixeira and the document is located here .

Introduction

Multi threaded programming is becoming ever more popular. This section presents a design for a C++ class
that will encapsulate the threading mechanism. Certain aspects of thread programming, like mutexes and
semaphores are not discussed here. Also, operating system calls to manipulate threads are shown in a generic
form.

Brief Introduction To Threads

To understand threads one must think of several programs running at once. Imagine further that all these
programs have access to the same set of global variables and function calls. Each of these programs would
represent a thread of execution and is thus called a thread. The important differentiation is that each thread
does not have to wait for any other thread to proceed. All the threads proceed simultaneously. To use a
metaphor, they are like runners in a race, no runner waits for another runner. They all proceed at their own
rate.

Why use threads you might ask. Well threads can often improve the performance of an application and they
do not incur significant overhead to implement. They effectively give good bang for a buck. Imagine an
image server program that must service requests for images. The program gets a request for an image from
another program. It must then retrieve the image from a database and send it to the program that requested it.
If the server were implemented in a single threaded approach, only one program could request at a time.
When it was busy retrieving an image and sending it to a requestor, it could not service other requests. Of
course one could still implement such a system without using threads. It would be a challenge though. Using
threads, one can very naturally design a system to handle multiple requests. A simple approach would be to
create a thread for each request received. The main thread would create this thread upon receipt of a request.
The thread would then be responsible for the conversation with the client program from that point on. After
retrieving the image, the thread would terminate itself. This would provide a smooth system that would
continue to service requests even though it was busy serviceing other requests at the same time.

 C++ Programming HOW−TO

18.1 Threads Tutorial 57

http://www.sigs.de/html/kuhlmann.html
http://www.milkywaygalaxy.freeservers.com
http://www.math.arizona.edu/swig/pthreads/threads.html
http://www.hert.org/docs/tutorials
http://www2.linuxjournal.com/lj-issues/issue61/3138.html
http://www.cse.nau.edu/~mc8/Thread/Contents.html
http://users.actcom.co.il/~choo/lupg/tutorials/multi-thread/multi-thread.html
mailto:ryte@geocities.com
http://www.geocities.com/SiliconValley/Heights/6038/dthreads.html

Basic Approach

The create a thread, you must specify a function that will become the entry point for the thread. At the
operating system level, this is a normal function. We have to do a few tricks to wrap a C++ class around it
because the entry function cannot be a normal member function of a class. However, it can be a static
member function of a class. This is what we will use as the entry point. There is a gotcha here though. Static
member functions do not have access to the this pointer of a C++ object. They can only access static data.
Fortunately, there is way to do it. Thread entry point functions take a void * as a parameter so that the caller
can typecast any data and pass in to the thread. We will use this to pass this to the static function. The static
function will then typecast the void * and use it to call a non static member function.

The Implementation

It should be mentioned that we are going to discuss a thread class with limited functionality. It is possible to
do more with threads than this class will allow.

class Thread
{
 public:
 Thread();
 int Start(void * arg);
 protected:
 int Run(void * arg);
 static void * EntryPoint(void*);
 virtual void Setup();
 virtual void Execute(void*);
 void * Arg() const {return Arg_;}
 void Arg(void* a){Arg_ = a;}
 private:
 THREADID ThreadId_;
 void * Arg_;

};

Thread::Thread() {}

int Thread::Start(void * arg)
{
 Arg(arg); // store user data
 int code = thread_create(Thread::EntryPoint, this, & ThreadId_);
 return code;
}

int Thread::Run(void * arg)
{
 Setup();
 Execute(arg);
}

/*static */
void * Thread::EntryPoint(void * pthis)
{
 Thread * pt = (Thread*)pthis;
 pthis−>Run(Arg());
}

 C++ Programming HOW−TO

Basic Approach 58

virtual void Thread::Setup()
{
 // Do any setup here
}

virtual void Thread::Execute(void* arg)
{
 // Your code goes here
}

It is important to understand that we are wrapping a C++ object around a thread. Each object will provide an
interface to a single thread. The thread and the object are not the same. The object can exist without a thread.
In this implementation, the thread does not actually exist until the Start function is called.

Notice that we store the user argument in the class. This is necessary because we need a place to store it
temporarily until the thread is started. The operating system thread call allows us to pass an argument but we
have used it to pass the this pointer. So we store the real user argument in the class itself and when the
execute function is called it can get access to the argument.

Thread(); This is the constructor.

int Start(void * arg); This function provides the means to create the thread and start it going. The argument
arg provides a way for user data to be passed into the thread. Start() creates the thread by calling the operating
system thread creation function.

int Run(void * arg); This is a protected function that should never be tampered with.

static void * EntryPoint(void * pthis); This function serves as the entry point to the thread. It simply casts
pthis to Thread * and

virtual void Setup(); This function is called after the thread has been created but before Execute() is called.
If you override this function, remember to call the parent class Execute().

virtual void Execute(void *); You must override this function to provide your own functionality.

Using The Thread Class

To use the thread class, you derive a new class. you override the Execute() function where you provide your
own functionality. You may override the Setup() function to do any start up duties before Execute is called. If
you override Setup(), remember to call the parent class Setup().

Conclusion

This section presented an implementation of a thread class written in C++. Of course it is a simple approach
but it provides a sound foundation upon which to build a more robust design.

If you have comments or suggestions, email to

 C++ Programming HOW−TO

Using The Thread Class 59

19. C++ Utilities

Visit the following sites for C++ Utilities

Portable C++ utilities from http://www.boost.org. The Boost web site provides free peer−reviewed
portable C++ source libraries. The emphasis is on libraries which work well with the C++ Standard
Library. One goal is to establish "existing practice" and provide reference implementations so that the
Boost libraries are suitable for eventual standardization.

•

The smart pointer library from http://www.boost.org/libs/smart_ptr/index.htm includes five smart
pointer class templates. Smart pointers ease the management of memory dynamically allocated with
C++ new expressions. In addition, scoped_ptr can ease the management of memory dynamically
allocated in other ways.

•

C++ Binary File I/O http://www.angelfire.com/country/aldev0/cpphowto/cpp_BinaryFileIO.html•

Portability Guide http://www.angelfire.com/country/aldev0/cpphowto/cpp_PortabilityGuide.html•

Snippets collections of C++ routines
http://www.angelfire.com/country/aldev0/cpphowto/cpp_Snippets.html and at snippets site

•

escape ISB for C++ − Provides information on how to develop and program distributed,
object−based applications in C++ for Windows and Unix using the Netscape Internet Service Broker
http://docs.iplanet.com/docs/manuals/enterprise/cpluspg/contents.htm

•

Common C++ http://www.voxilla.org/projects/projape.html•

Large List of free C++ libs http://www.thefreecountry.com/developercity/freelib.html•

C++ Tools http://development.freeservers.com•

C++ Tools CUJ http://www.cuj.com/code•

C++libs Univ of vaasa http://garbo.uwasa.fi/pc/c−lang.html•

19.1 Memory Tools

Use the following memory debugging tools

The "MPatrol" is a very powerful memory debugging tool. It is at
http://www.cbmamiga.demon.co.uk/mpatrol and at http://www.rpmfind.net go here and search
mpatrol. If you are using Linux then you must download the mpatrol*.src.rpm file from the
rpmfind.net. To update the mpatrol*.src.rpm to latest version, you can use the old mpatrol.spec file
and latest mpatrol*.tar.gz file to rebuild new *.src.rpm.

•

On Linux contrib cdrom see mem_test*.rpm package and at http://www.rpmfind.net go here and
search mem_test.

•

On Linux cdrom see ElectricFence*.rpm package and at http://www.rpmfind.net go here and search
electricfence.

•

 C++ Programming HOW−TO

19. C++ Utilities 60

http://www.boost.org
http://www.boost.org/libs/smart_ptr/index.htm
http://www.angelfire.com/country/aldev0/cpphowto/cpp_BinaryFileIO.html
http://www.angelfire.com/country/aldev0/cpphowto/cpp_PortabilityGuide.html
http://www.angelfire.com/country/aldev0/cpphowto/cpp_Snippets.html
http://www.strangecreations.com/library/snippets
http://docs.iplanet.com/docs/manuals/enterprise/cpluspg/contents.htm
http://www.voxilla.org/projects/projape.html
http://www.thefreecountry.com/developercity/freelib.html
http://development.freeservers.com
http://www.cuj.com/code
http://garbo.uwasa.fi/pc/c-lang.html
http://www.cbmamiga.demon.co.uk/mpatrol
http://www.rpmfind.net
http://www.rpmfind.net
http://www.rpmfind.net

Purify Tool from Rational Software Corp http://www.rational.com•

Insure++ Tool from Parasoft Corp http://www.parasoft.com•

Linux Tools at http://www.xnet.com/~blatura/linapp6.html#tools•

Search the Internet engines like Google, Yahoo, Lycos, Excite, Mamma.com for keyword "Linux
memory debugging tools".

•

20. Other Formats of this Document

This document is published in 14 different formats namely − DVI, Postscript, Latex, Adobe Acrobat PDF,
LyX, GNU−info, HTML, RTF(Rich Text Format), Plain−text, Unix man pages, single HTML file, SGML
(linuxdoc format), SGML (Docbook format), MS WinHelp format.

This howto document is located at −

http://www.linuxdoc.org and click on HOWTOs and search for howto document name using
CTRL+f or ALT+f within the web−browser.

•

You can also find this document at the following mirrors sites −

http://www.caldera.com/LDP/HOWTO•
http://www.linux.ucla.edu/LDP•
http://www.cc.gatech.edu/linux/LDP•
http://www.redhat.com/mirrors/LDP•
Other mirror sites near you (network−address−wise) can be found at
http://www.linuxdoc.org/mirrors.html select a site and go to directory
/LDP/HOWTO/xxxxx−HOWTO.html

•

You can get this HOWTO document as a single file tar ball in HTML, DVI, Postscript or SGML
formats from − ftp://www.linuxdoc.org/pub/linux/docs/HOWTO/other−formats/ and
http://www.linuxdoc.org/docs.html#howto

•

Plain text format is in: ftp://www.linuxdoc.org/pub/linux/docs/HOWTO and
http://www.linuxdoc.org/docs.html#howto

•

Single HTML file format is in: http://www.linuxdoc.org/docs.html#howto•

Single HTML file can be created with command (see man sgml2html) − sgml2html −split 0
xxxxhowto.sgml

Translations to other languages like French, German, Spanish, Chinese, Japanese are in
ftp://www.linuxdoc.org/pub/linux/docs/HOWTO and http://www.linuxdoc.org/docs.html#howto Any
help from you to translate to other languages is welcome.

•

The document is written using a tool called "SGML−Tools" which can be got from −
http://www.sgmltools.org Compiling the source you will get the following commands like

sgml2html xxxxhowto.sgml (to generate html file)•
sgml2html −split 0 xxxxhowto.sgml (to generate a single page html file)•

 C++ Programming HOW−TO

20. Other Formats of this Document 61

http://www.rational.com
http://www.parasoft.com
http://www.xnet.com/~blatura/linapp6.html#tools
http://www.linuxdoc.org
http://www.caldera.com/LDP/HOWTO
http://www.linux.ucla.edu/LDP
http://www.cc.gatech.edu/linux/LDP
http://www.redhat.com/mirrors/LDP
http://www.linuxdoc.org/mirrors.html
ftp://www.linuxdoc.org/pub/linux/docs/HOWTO/other-formats/
http://www.linuxdoc.org/docs.html#howto
ftp://www.linuxdoc.org/pub/linux/docs/HOWTO
http://www.linuxdoc.org/docs.html#howto
http://www.linuxdoc.org/docs.html#howto
ftp://www.linuxdoc.org/pub/linux/docs/HOWTO
http://www.linuxdoc.org/docs.html#howto
http://www.sgmltools.org

sgml2rtf xxxxhowto.sgml (to generate RTF file)•
sgml2latex xxxxhowto.sgml (to generate latex file)•

20.1 Acrobat PDF format

PDF file can be generated from postscript file using either acrobat distill or Ghostscript. And postscript file
is generated from DVI which in turn is generated from LaTex file. You can download distill software from
http://www.adobe.com. Given below is a sample session:

bash$ man sgml2latex
bash$ sgml2latex filename.sgml
bash$ man dvips
bash$ dvips −o filename.ps filename.dvi
bash$ distill filename.ps
bash$ man ghostscript
bash$ man ps2pdf
bash$ ps2pdf input.ps output.pdf
bash$ acroread output.pdf &

Or you can use Ghostscript command ps2pdf. ps2pdf is a work−alike for nearly all the functionality of
Adobe's Acrobat Distiller product: it converts PostScript files to Portable Document Format (PDF) files.
ps2pdf is implemented as a very small command script (batch file) that invokes Ghostscript, selecting a
special "output device" called pdfwrite. In order to use ps2pdf, the pdfwrite device must be included in the
makefile when Ghostscript was compiled; see the documentation on building Ghostscript for details.

20.2 Convert linuxdoc to Docbook format

This document is written in linuxdoc SGML format. The Docbook SGML format supercedes the linuxdoc
format and has lot more features than linuxdoc. The linuxdoc is very simple and is easy to use. To convert
linuxdoc SGML file to Docbook SGML use the program ld2db.sh and some perl scripts. The ld2db output is
not 100% clean and you need to use the clean_ld2db.pl perl script. You may need to manually correct few
lines in the document.

Download ld2db program from http://www.dcs.gla.ac.uk/~rrt/docbook.html or from Milkyway
Galaxy site

•

Download the cleanup_ld2db.pl perl script from from Milkyway Galaxy site•
The ld2db.sh is not 100% clean, you will get lots of errors when you run

 bash$ ld2db.sh file−linuxdoc.sgml db.sgml
 bash$ cleanup.pl db.sgml > db_clean.sgml
 bash$ gvim db_clean.sgml
 bash$ docbook2html db.sgml

And you may have to manually edit some of the minor errors after running the perl script. For e.g. you may
need to put closing tag < /Para> for each < Listitem>

 C++ Programming HOW−TO

 20.1 Acrobat PDF format 62

http://www.adobe.com
http://www.dcs.gla.ac.uk/~rrt/docbook.html
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com

20.3 Convert to MS WinHelp format

You can convert the SGML howto document to Microsoft Windows Help file, first convert the sgml to html
using:

 bash$ sgml2html xxxxhowto.sgml (to generate html file)
 bash$ sgml2html −split 0 xxxxhowto.sgml (to generate a single page html file)

Then use the tool HtmlToHlp. You can also use sgml2rtf and then use the RTF files for generating winhelp
files.

20.4 Reading various formats

In order to view the document in dvi format, use the xdvi program. The xdvi program is located in
tetex−xdvi*.rpm package in Redhat Linux which can be located through ControlPanel | Applications |
Publishing | TeX menu buttons. To read dvi document give the command −

 xdvi −geometry 80x90 howto.dvi
 man xdvi

And resize the window with mouse. To navigate use Arrow keys, Page Up, Page Down keys, also you can
use 'f', 'd', 'u', 'c', 'l', 'r', 'p', 'n' letter keys to move up, down, center, next page, previous page etc. To turn off
expert menu press 'x'.

You can read postscript file using the program 'gv' (ghostview) or 'ghostscript'. The ghostscript program is in
ghostscript*.rpm package and gv program is in gv*.rpm package in Redhat Linux which can be located
through ControlPanel | Applications | Graphics menu buttons. The gv program is much more user friendly
than ghostscript. Also ghostscript and gv are available on other platforms like OS/2, Windows 95 and NT,
you view this document even on those platforms.

Get ghostscript for Windows 95, OS/2, and for all OSes from http://www.cs.wisc.edu/~ghost•

To read postscript document give the command −

 gv howto.ps
 ghostscript howto.ps

You can read HTML format document using Netscape Navigator, Microsoft Internet explorer, Redhat Baron
Web browser or any of the 10 other web browsers.

You can read the latex, LyX output using LyX a X−Windows front end to latex.

21. Translations To Other Languages

Translation to Polish is at http://strony.wp.pl/wp/chq/c/howto/book1.htm thanks to Darek Ostolski
Darek Ostolski

•

 C++ Programming HOW−TO

 20.3 Convert to MS WinHelp format 63

http://Javadocs.planetmirror.com/htmltohlpe.html
http://www.cs.wisc.edu/~ghost
http://strony.wp.pl/wp/chq/c/howto/book1.htm
mailto:chq@wp.pl

Translations to other languages like French, German, Spanish, Chinese, Japanese are in
ftp://www.linuxdoc.org/pub/linux/docs/HOWTO and http://www.linuxdoc.org/docs.html#howto

•

Any help from you to translate to other languages is welcome.

22. Copyright

Copyright policy is GNU/GPL as per LDP (Linux Documentation project). LDP is a GNU/GPL project.
Additional requests are that you retain the author's name, email address and this copyright notice on all the
copies. If you make any changes or additions to this document then you please intimate all the authors of this
document. Brand names mentioned in this document are property of their respective owners.

23. Appendix A String Program Files

You can download all programs as a single tar.gz file from Download String and give the following
command to unpack

bash$ man tar
bash$ tar ztvf C++Programming−HOWTO.tar.gz
This will list the table of contents

bash$ tar zxvf C++Programming−HOWTO.tar.gz
This will extract the files

Read the header file first and then see the example cpp program
String.h http://www.angelfire.com/country/aldev0/cpphowto/String.h♦
StringBuffer.h http://www.angelfire.com/country/aldev0/cpphowto/StringBuffer.h♦
StringTokenizer.h http://www.angelfire.com/country/aldev0/cpphowto/StringTokenizer.h♦
StringRW.h http://www.angelfire.com/country/aldev0/cpphowto/StringRW.h♦
string_multi.h http://www.angelfire.com/country/aldev0/cpphowto/string_multi.h♦
example_String.cpp example_String.cpp click on 'Source code of C++ howto'.♦

•

File manipulation class, only length() function is implemented..
File.h http://www.angelfire.com/country/aldev0/cpphowto/File.h♦
File.cpp File.cpp click on 'Source code of C++ howto'.♦

•

The zap() implemented here ..
my_malloc.h http://www.angelfire.com/country/aldev0/cpphowto/my_malloc.h♦
my_malloc.cpp my_malloc.cpp click on 'Source code of C++ howto'.♦

•

Implementation of String class...
String.cpp String.cpp click on 'Source code of C++ howto'.♦
StringTokenizer.cpp StringTokenizer.cpp click on 'Source code of C++ howto'.♦
StringBuffer.cpp StringBuffer.cpp click on 'Source code of C++ howto'.♦
StringRW.cpp StringRW.cpp click on 'Source code of C++ howto'.♦

•

Debug facilities .. •

 C++ Programming HOW−TO

22. Copyright 64

ftp://www.linuxdoc.org/pub/linux/docs/HOWTO
http://www.linuxdoc.org/docs.html#howto
http://www.angelfire.com/country/aldev0/cpphowto/String.h
http://www.angelfire.com/country/aldev0/cpphowto/StringBuffer.h
http://www.angelfire.com/country/aldev0/cpphowto/StringTokenizer.h
http://www.angelfire.com/country/aldev0/cpphowto/StringRW.h
http://www.angelfire.com/country/aldev0/cpphowto/string_multi.h
http://www.milkywaygalaxy.freeservers.com
http://www.angelfire.com/country/aldev0/cpphowto/File.h
http://www.milkywaygalaxy.freeservers.com
http://www.angelfire.com/country/aldev0/cpphowto/my_malloc.h
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com

debug.h http://www.angelfire.com/country/aldev0/cpphowto/debug.h♦
debug.cpp debug.cpp click on 'Source code of C++ howto'.♦
Makefile.unx http://www.angelfire.com/country/aldev0/cpphowto/Makefile.unx♦

Sample Java file for testing the functionalities of String class ..
string.java http://www.angelfire.com/country/aldev0/cpphowto/string.java♦

•

 C++ Programming HOW−TO

22. Copyright 65

http://www.angelfire.com/country/aldev0/cpphowto/debug.h
http://www.milkywaygalaxy.freeservers.com
http://www.angelfire.com/country/aldev0/cpphowto/Makefile.unx
http://www.angelfire.com/country/aldev0/cpphowto/string.java

	Table of Contents
	C++ Programming HOW-TO
	Al Dev (Alavoor Vasudevan) alavoor[AT]yahoo.com
	1. Introduction
	2. Recommended C++ Compilers
	3. String Class Varieties
	4. Download String
	5. Usage of String class
	6. String.h file
	7. The Standard C++ Library string class
	8. File Class
	9. Memory Allocation in C++
	10. Pointers are problems
	11. Debugging
	12. IDE's and editors for C++
	13. C++ Online Textbooks and Docs
	14. C++ Coding Conventions
	15. C++ Scripting Languages
	16. Templates
	17. STL References
	18. Threads in C++
	19. C++ Utilities
	20. Other Formats of this Document
	21. Translations To Other Languages
	22. Copyright
	23. Appendix A String Program Files
	1. Introduction
	1.1 Program in C++ ? C++ vs. Java/PHP
	1.2 Which one Ada95, C, C++, Java or PHP?
	1.3 Problems facing the current C++ compilers
	 2. Recommended C++ Compilers
	2.1 Compilers for MS Windows 2000/NT/95/98/ME/XP
	2.2 Compilers for UNIX systems and clones
	 3. String Class Varieties
	3.1 Multiple Inheritance - Sample Custom String class
	 4. Download String
	 4.1 How Can I trust Al Dev's String Class?
	5. Usage of String class
	5.1 Operators
	5.2 Functions
	5.3 Renaming the String class
	Case 1: Simple rename
	Case 2: Resolve conflict

	6. String.h file
	6.1 StringBuffer.h
	6.2 StringTokenizer.h
	 7. The Standard C++ Library string class
	7.1 string by example
	7.2 Searching a string
	7.3 A string tokenizer
	8. File Class
	 9. Memory Allocation in C++
	 9.1 C++ Zap (Delete) function
	 9.2 Usage of my_malloc and my_free
	 9.3 Garbage Collector for C++
	 10. Pointers are problems
	11. Debugging
	11.1 Debug files
	 12. IDE's and editors for C++
	12.1 IDE's
	12.2 Editors
	12.3 Other ressources
	 13. C++ Online Textbooks and Docs
	13.1 C++ Sites
	13.2 C++ Tutorials
	13.3 Useful links
	13.4 C++ Quick-Reference
	13.5 C++ Usenet Newsgroups
	13.6 Java like API
	14. C++ Coding Conventions
	15. C++ Scripting Languages
	15.1 PIKE & PHP (C/C++ Scripting Languages)
	15.2 SoftIntegration Ch (C/C++ Scripting Language)
	15.3 PHP (C++ Scripting Language)
	16. Templates
	 17. STL References
	17.1 Overview of the STL
	17.2 Header Files
	17.3 The Container Classes Interface
	17.4 Vectors
	Constructing Vectors
	Checking Up on Your Vector
	Accessing Elements of a Vector
	Inserting and Erasing Vector Elements
	Vector Iterators
	Comparing Vectors

	17.5 Iterators and the STL
	17.6 Lists
	17.7 Sets
	Constructing Sets
	What are Function Objects?
	A Printing Utility
	How Many Elements?
	Checking the Equality of Sets.
	Adding and Deleting Elements
	Finding Elements
	Set Theoretic Operations

	17.8 Maps
	17.9 STL Algorithms
	18. Threads in C++
	18.1 Threads Tutorial
	18.2 Designing a Thread Class in C++
	Introduction
	Brief Introduction To Threads
	Basic Approach
	The Implementation
	Using The Thread Class
	Conclusion

	19. C++ Utilities
	19.1 Memory Tools
	20. Other Formats of this Document
	 20.1 Acrobat PDF format
	 20.2 Convert linuxdoc to Docbook format
	 20.3 Convert to MS WinHelp format
	 20.4 Reading various formats
	21. Translations To Other Languages
	22. Copyright
	 23. Appendix A String Program Files

