
The X Window User HOWTO

Hal Burgiss

 hal@foobox.net

v3.0 06 March 2002

Revision History

Revision v3.0 2002−03−06 Revised by: hb

Rewrite of the original document. Convert to DocBook. Many, many changes.

This document provides basic information on understanding and configuring the X Window System for
Linux users. This is meant to be an introductory level document. A basic knowledge of software
configuration is assumed, as is the presence of an installed and working X Window System.

Table of Contents
1. Introduction...1

1.1. New Versions and ChangeLog...1
1.2. To Do..2
1.3. Feedback...2
1.4. Help!...2
1.5. Acknowledgments...2
1.6. Copyright..3
1.7. Standard Disclaimer..3

2. XFree86..4
2.1. Hardware...5
2.2. XF86Config..6
2.3. xvidtune and Monitor Tuning...9

3. Running X..11
3.1. startx..11

3.1.1. xserverrc..12
3.1.2. xinitrc..12
3.1.3. Xclients...14

3.2. Display Managers...15
3.2.1. xdm...16
3.2.2. gdm...18
3.2.3. kdm...19

4. More X Configuration..20
4.1. X Resources..20

4.1.1. App Defaults...21
4.1.2. Xdefaults...22

4.2. xmodmap, the Keyboard and Mice...24
4.2.1. Special Key Mappings..26
4.2.2. Mice and Pointers...26

4.3. xset..27

5. Fonts and Colors...28
5.1. Fonts Demystified...28

5.1.1. Type 1 and TrueType Fonts..31
5.2. Colors..31

6. Window Managers and Desktops..33
6.1. Window Managers..33
6.2. Desktop Environments..33

7. X and the Command Line..36
7.1. xterm and friends..37

8. X Networking and Security..39

9. Performance Considerations..40

The X Window User HOWTO

i

Table of Contents
9.1. Hardware...40
9.2. Memory...40
9.3. Other Tips...42

10. Appendix..43
10.1. Terminology and Usage..43
10.2. Links and other References...45

The X Window User HOWTO

ii

1. Introduction
The X Window System is an advanced, graphical computing and network environment that was designed from
the ground up as a multi−user system. X was first released in 1984. If you are not familiar with the basic
concepts surrounding X and it's related components, you should first read the X Window System Architecture
Overview HOWTO, http://linuxdoc.org/HOWTO/XWindow−Overview−HOWTO/index.html, to get an idea
of how the various pieces fit together. There is also an attempt to define to various X related terminology in
the Appendix, if concepts such as "displays" and "X clients" in this context are confusing to you.

This document will address basic X Window configuration and usage on Linux. We will also look at how
X is commonly started in Linux, and how the start up can be configured, and related issues. We will
not examine Window Manager (e.g. fvwm), or Desktop Environment (KDE and GNOME) configuration.
There are just too many variables there, and the pace of change moves too quickly. Of course, to a large
extent the user interacts more directly with these components than the X server itself, so additional reading
would be worthwhile. Check your locally installed documentation, and the respective home pages for more
information.

Some other important points to remember here:

X is a client−server, multi−user system in every respect, and not just a GUI. •
X is not integrated into the operating system, and rides on top of it, like other servers. •
X is an open standard, and runs on many platforms. •
What you actually see on the screen is the result of various components, all working together:
operating system, X, Window Manager, and optionally, a desktop environment like GNOME or
KDE. These are all "plug and play" components, meaning you can interchange an individual
component without touching the other components.

•

Each of the various components has its own configuration. This makes for a very flexible, and
potentially very robust, system. It also adds complexity.

•

The discussion here will be limited to X as implemented by The XFree86 Project, Inc. on Linux. There are
other implementations, including commercial ones. XFree86 v4.x has been out for some time now, so we will
be assuming that version. Much of the discussion applies to the previous 3.x version as well, but there are
some occasional differences.

It is also worth noting that there are conceivably many ways to start X, and to set up a Linux system. We will
focus on the common methods found in Linux distributions. Also, vendors may vary on where they put
configuration files, and how they name them. Keep this in mind if you see such discrepancies in this
document. If this is a problem, your vendor surely has their own documentation. And as always, hopefully the
man pages will conform to your installation.

Also, we will look at various configuration files in the following sections. These are all plain text files, and
can be edited with your favorite editor. Always make a backup copy before editing important files, in case
Murphy pays a visit (e.g. "cp /etc/X11/XF86Config−4 /etc/X11/XF86Config−4.bak").

1.1. New Versions and ChangeLog

The current official version of this HOWTO may be found at the Linux Documentation Project,
http://www.linuxdoc.org/HOWTO/XWindow−User−HOWTO.html. Pre−release versions may be

1. Introduction 1

http://linuxdoc.org/HOWTO/XWindow-Overview-HOWTO/index.html
http://xfree86.org
http://www.linuxdoc.org/HOWTO/XWindow-User-HOWTO.html

periodically posted to http://feenix.burgiss.net/ldp/x−user/.

v3.0: This is a major rewrite with several new sections. Some sections were removed, with the focus more
now on just X itself (and not clients like Window Managers). New maintainer too :−)

v2.0: includes corrections from Guus Bosch, Brian J. Miller, and myself, as well as lots of new updates and
info.

v1.4: include corrections and additions from Anthony J., and some very good security tips from Tomasz
Motylewski.

1.2. To Do

A rudimentary troubleshooting section. Probably for v3.1.

1.3. Feedback

If you have questions or comments about this document, please feel free to email me, Hal Burgiss at
<hal@foobox.net>. I welcome any suggestions, corrections, or additions. If you have information you
would like to see in future revisions, or you would like to contribute to a future revision, please drop me a
note.

1.4. Help!

I have assumed maintainership of this document because it was abandoned, and I had wanted to offer a
suggested change. Well, to make a long story short, this led to a major re−write. You can help make this a
better document by correcting inaccuracies, clarifying the unclear, and suggesting improvements. There is
much about this topic I may not know, or not have explained well. Your help will improve this document and
help other users. This document needs your help!

1.5. Acknowledgments

Thanks to the XFree86 development team for their efforts in providing a robust and flexible GUI. And to the
whole GNU/Linux and Open Source community for making it all possible.

Also, the original author, Ray Brigleb.

Various users on comp.os.linux.x that have helped in one way or another, whether they know it or not.

Lastly, http://google.com/linux, who saved me much time with their incredible repository of information. Use
it to answer questions not answered here!

The X Window User HOWTO

1.2. To Do 2

http://feenix.burgiss.net/ldp/x-user/
mailto:hal@foobox.net
http://google.com/linux

1.6. Copyright

Copyright © 2002, Hal Burgiss.

Unless otherwise stated, Linux HOWTO documents are copyrighted by their respective authors. Linux
HOWTO documents may be reproduced and distributed in whole or in part, in any medium physical or
electronic, as long as this copyright notice is retained on all copies. Commercial redistribution is allowed and
encouraged; however, the author would like to be notified of any such distributions.

All translations, derivative works, or aggregate works incorporating any Linux HOWTO documents must be
covered under this copyright notice. That is, you may not produce a derivative work from a HOWTO and
impose additional restrictions on its distribution. Exceptions to these rules may be granted under certain
conditions; please contact the Linux HOWTO coordinator for more information.

In short, we wish to promote dissemination of this information through as many channels as possible.
However, we do wish to retain copyright on the HOWTO documents, and would very much like to be
notified of any plans to redistribute the HOWTOs, this one in particular!

Some of the terms mentioned in this document are trade names. Unless otherwise stated, all trademarks are
property of their respective owners.

"X Window System" is a trademark of the X Consortium, Inc [now the OpenGroup?].

"XFree86" is a trademark of The XFree86 Project, Inc.

"Linux" is a Registered Trademark of Linus Torvalds.

1.7. Standard Disclaimer

The information and examples given here are for illustrative purposes. Use at your own risk. Every attempt
has been made to insure that the content of this document was accurate when written. If you find
inaccuracies, please send me clarifications.

References to any particular company, product or brand name should not be construed as an endorsement.

The X Window User HOWTO

1.6. Copyright 3

http://xfree86.org

2. XFree86
Virtually every Linux distribution comes with XFree86's X Window System implementation. This project, of
course, provides us the X server, but also includes an extensive suite of utilities and applications to help
implement a fully functional GUI environment.

In fact, the list would be just too long to list everything that comes with XFree86. In addition to the X server
itself, here are a few of the noteworthy utilities:

xdm − the X Display Manager.

xfs − the X Font Server.

twm − a lightweight Window Manager.

xterm − the best known terminal emulator. Also, xterm3d and nxterm.

xwd − a screen and window image capturer.

xf86config − X server configuration utility.

xdpyinfo − X display information utility. This shows great detail about the X server.

xlsclients − lists currently connected X server clients.

xlsfonts − lists fonts available to X.

appres − lists the X "resources" that a program will use.

xfontsel − an application for viewing or selecting fonts.

xprop − a tool for displaying window "properties", such as the Class name of the client.

xset − sets user preferences for many things, including mouse, keyboard, sound (bell), etc.

xsetroot − a program for changing the "root window" appearance, e.g. setting a background color.

xvidtune − an application to adjust X server video modes and monitor related settings.

xwininfo − displays information about a selected "window".

xmodmap − a utility for manipulating keyboard and mouse button mappings.

Many, many fonts. And quite a bit of documentation as well.

2. XFree86 4

There are many more. We'll just touch on a few of these utilities here. But feel free to explore the others.
Most should have their own man pages.

2.1. Hardware

The X server controls both input (keyboard, mouse, etc) and output (display, monitor) devices.

Compatible hardware is a tough topic, since it is very much a moving target. We are forced here to avoid
specifics, since this would surely change by the time you read this. And would be tediously lengthy anyway.

So let's settle for some generalities. Most PC type hardware is supported to one degree or another. Big help ;−)

Rule of thumb: if it is a device that uses a long−standing, commonplace protocol (e.g. PS/2), it should be well
supported. Conversely, if it is something relatively new, with ground−breaking technology, the odds are not
as good. This is just the nature of the beast with open source development versus manufacturers that cater
more to the most popular platforms. Some manufacturers are more co−operative than others too.

Now, some general guidelines:

Monitors − This is easy. Linux does not really need to be compatible with the monitor per se. That is
the job of the video card. Any monitor that your graphics card can drive should do fine. Including,
flat panel monitors.

•

Video cards − This is much tougher. The X server is determined by the the chipset. Many, many are
supported. But inevitably there are always some newer cards, or even revised cards, that are not. And
some may have better support and better optimization than others. Advanced features such as
multi−headed displays, 3D, TV out, DRI, etc., have some support as well, though this should be
researched first, as the support may be limited. Supported cards are listed:
http://xfree86.org/cardlist.html.

•

Open source drivers are often developed incrementally. For instance, a particular card may work well
for basic display purposes, but specialized features such as 3D may come much later in the
development cycle. This is a quite different development model than with proprietary drivers from
the manufacturer.

Keyboards −− Any standard PC type keyboard should do fine, including PS/2, USB and many
infra−red devices. Probably many "non−standard" ones too ;−)

•

Mice and other pointer devices −− Most should be supported including PS/2, bus, serial, USB and
many infra−red devices. Optical mice also. Unix has long preferred three button mice, though more
buttons is supported as well. Many wheeled mice have X server support via the
"IMPS/2" (IntelliMouse), or other specific protocols, though may require supplemental configuration
for some individual applications. (See the Links section.)

•

Laptops have their own unique set of problems since the hardware tends to be very specialized, and
often different from what is commonly found on desktop style systems. X is supported by many.
Check for details at http://www.linux−laptop.net/.

•

You can check the "hardware compatibility list" at your distribution's web site too. This should give a very
good idea of what should work with your release.

The X Window User HOWTO

2.1. Hardware 5

http://xfree86.org/cardlist.html
http://www.linux-laptop.net/

Newer versions of XFree86 obviously will have better hardware support. If you are using an older Linux
version and don't have full hardware support, see about upgrading XFree86. Check first to see if your
distribution has updates for your release.

2.2. XF86Config

The primary configuration file for XFree86 is XF86Config, which may exist on your system as
XF86Config−4 for XFree86 v4.x, or possibly other variations (see man page). It is typically located as
/etc/X11/XF86Config, though again, there may be variations in the path. If both a
XF86Config−4 and XF86Config exist, XFree86 v4.x will use the former. This is a required file.

XF86Config file defines hardware devices, and other critical components of the X server environment.

While this is a plain text file, and is editable, it is most often created during installation by whatever utility
your vendor uses for this purpose. XFree86 also includes the xf86config utility for this, but many
distributions have their own such utilities. These utilities can be run after installation if need be, to alter the
configuration, or if new hardware is installed. Read your locally installed documentation first. If you attempt
to hand edit this file, be sure to make a backup copy first since X won't start if this file is not to its liking ;−)

This file contains various "sections". Each section defines some fundamental aspect of XFree86, such as
"InputDevice" (mouse, keyboard, joystick, etc), "monitor", or "screen". The XF86Config man page
describes the sections and common values for each. Note that the values listed in the man page is not a
comprehensive listing. There are many device specific "options". Check http://xfree86.org for notes and tips
on your hardware.

The author's current XF86Config−4, as generated by Red Hat's installer for XFree86 4.1:

Section "ServerLayout"
 Identifier "XFree86 Configured"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection

Section "Files"
 # The location of the RGB database.
 RgbPath "/usr/X11R6/lib/X11/rgb"

 # Multiple FontPath entries are allowed (they are concatenated together)
 # By default, Red Hat 6.0 and later now use a font server independent of
 # the X server to render fonts.
 FontPath "unix/:7100"
EndSection

Module loading section

Section "Module"
 Load "dbe" # Double−buffering
 Load "GLcore" # OpenGL support
 Load "dri" # Direct rendering infrastructure
 Load "glx" # OpenGL X protocol interface
 Load "extmod" # Misc. required extensions
 Load "v4l" # Video4Linux
Load "fbdevhw"

The X Window User HOWTO

2.2. XF86Config 6

http://xfree86.org

 Load "pex5"
 Load "record"
 Load "xie"
EndSection

Section "InputDevice"
 Identifier "Keyboard0"
 Driver "keyboard"
 Option "XkbLayout" "us"

Option "AutoRepeat" "500 5"

when using XQUEUE, comment out the above line, and uncomment the
following line
Option "Protocol" "Xqueue"

Specify which keyboard LEDs can be user−controlled (eg, with xset(1))
Option "Xleds" "1 2 3"

To disable the XKEYBOARD extension, uncomment XkbDisable.
Option "XkbDisable"

To customize the XKB settings to suit your keyboard, modify the
lines below (which are the defaults). For example, for a non−U.S.
keyboard, you will probably want to use:
Option "XkbModel" "pc102"
If you have a US Microsoft Natural keyboard, you can use:
Option "XkbModel" "microsoft"
EndSection

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/mouse"
 Option "Protocol" "IMPS/2"
 Option "Emulate3Buttons" "off"
 Option "ZAxisMapping" "4 5"
EndSection

Section "Monitor"
 Identifier "Sylvania F74"
 VendorName "Unknown"
 ModelName "Unknown"
 HorizSync 30 − 70
 VertRefresh 55 − 120
 Option "dpms"
Modelines go here if necessary. Use xvidtune to get proper values.
EndSection

Section "Device"
 Identifier "ATI Rage 128"
 Driver "r128"
 BoardName "Unknown"
EndSection

Section "Device"
 Identifier "Linux Frame Buffer"
 Driver "fbdev"
 BoardName "Unknown"
EndSection

The X Window User HOWTO

2.2. XF86Config 7

Section "Screen"
 Identifier "Screen0"
 Device "ATI Rage 128"
 Monitor "Sylvania F74"
 DefaultDepth 24
 Subsection "Display"
 Depth 24
 Modes "1400x1050" "1280x1024" "1152x864" "1024x768" "800x600"
 EndSubSection
 Subsection "Display"
 Depth 16
 Modes "1600x1200" "1400x1050" "1280x1024" "1152x864" "1024x768" "800x600"
 EndSubSection
 Subsection "Display"
 Depth 8
 Modes "1024x768" "800x600" "640x480"
 EndSubSection
EndSection

Section "DRI"
 Mode 0666
EndSection

Yours may look quite different. This is just one possible configuration with gratuitous comments from Red
Hat (and me), and is for a fairly ordinary set up. There is nothing exotic here like multiple screens or displays.

It is beyond the scope of this document to explain this in detail. See the XF86Config man page. Also,
consider visiting xfree86.org and look for specific options that might apply to your card or other hardware.

Just one quick note on the "Screen" section above. Notice there are three sub−sections, identified as
"Display". Each sub−section has a different "Depth" specified, (a.k.a. ColorDepth). The "Modes" also vary
somewhat according to the respective "Depth" setting. The active "Display" sub−section that will be used, is
determined by the "DefaultDepth" setting (unless over−ridden by command line options). The default in this
example is defined as "24", so the first sub−section will be used. Also, the highest "Mode" listed in this
sub−section will be the default mode (resolution), which here is the first one listed. The first listed mode also
determines the viewable screen area, which can be smaller than the mode (resolution) itself. In which case,
you would have a virtual desktop that is larger than the viewable screen. To have the viewable screen, and
resolution match, have the largest value as the first value listed for each "Mode".

Another note on the "Modes" here: what you see is the result of my choices during Red Hat's
Xconfigurator's configuration. These are standard resolutions, but do not have to be! This is only limited by
what your hardware can support. And you don't have to use standard width x height ratios either. Something
like 1355x1112 is a valid setting (if your hardware supports it and it floats your boat!).

The X server will reject any "Modes" it thinks are invalid. You can cycle through valid modes to change
screen resolution with Ctrl−Alt−+ and Ctrl−Alt−− (that's the keypad plus and minus keys).

In versions prior to v4.x, you would also see many "Modeline" statements that attempted to define the
monitor's capabilities. These statements would look something like:

 # 1024x768 @ 100Hz, 80.21 kHz hsync
 Modeline "1024x768" 115.5 1024 1056 1248 1440 768 771 781 802 −HSync −VSync

The X Window User HOWTO

2.2. XF86Config 8

http://xfree86.org

Explicit "Modeline" definitions are not required as of 4.x ;−) This sometimes required hand editing to get
optimal values in earlier versions of XFree86, though is generally not necessary with v4.x. The XFree86
Video Timings HOWTO,
http://www.linuxdoc.org/HOWTO/XFree86−Video−Timings−HOWTO/index.html has a nice, but rather
technical, explanation of this.

If whatever configuration utility you are using, does not automatically recognize your video card or monitor
specifications correctly, you are unlikely to get an optimal configuration. In such cases, you may have to
manually supply the correct values. This should be available from your owner's manual (you kept that,
right?). Or, check the manufacturer's web site.

Again, hand editing of this file is generally unnecessary. Should you decide this is indeed necessary, be
careful. One small error may cause X to fail. Any changes to this file will require restarting X for the changes
to take effect.

Using somebody else's XF86Config file, is generally a bad idea since they are unlikely to have identical
hardware.

2.3. xvidtune and Monitor Tuning

You probably want to get the most out of your hardware. If X isn't configured optimally, consider re−running
your vendor's X configuration utility and try to get better results. It is highly unlikely that you could hurt
anything by experimenting. Most modern monitors now have safeguards that prevent a meltdown ;−)

If you over−do it though X may not be able to start. For this reason, I prefer to use the "startx" way of starting
X (see below) while "experimenting". This way if X crashes, the display manager (GUI login) will not loop
and cause you severe headaches. startx just gracefully goes back to a text console screen, where an error
message may be visible.

Another way of tweaking monitor related settings is with XFree86's xvidtune program. This is run
interactively and can be used to adjust various settings (see man page). The simple dialog box has sliders and
buttons that allow user input and adjustment. The top part has horizontal monitor settings on the left, and
vertical settings on the right. The buttons just below the sliders can be used to adjust each.

This is sometimes used to adjust the viewable screen area, such as to center it, or increase its size to fill the
monitor's viewport. When xvidtune is launched, it defaults to the current settings.

The bottom left corner has buttons that can "Apply" new settings, "Test" new settings, or "Show" current
settings (i.e. dump to screen), among other things. Any changes made here are not saved. If new settings are
"Applied", it is just for the current session. Example output of xvidtune "Show":

 Vendor: Unknown, Model: Unknown
 Num hsync: 1, Num vsync: 1
 hsync range 0: 30.00 − 70.00
 vsync range 0: 55.00 − 120.00
 "1400x1050" 122.00 1400 1488 1640 1880 1050 1052 1064 1082 +hsync +vsync

The X Window User HOWTO

2.3. xvidtune and Monitor Tuning 9

http://www.linuxdoc.org/HOWTO/XFree86-Video-Timings-HOWTO/index.html

The last line is the "Modeline" being used to drive the current screen. See The XFree86 Video Timings
HOWTO, http://www.linuxdoc.org/HOWTO/XFree86−Video−Timings−HOWTO/index.html, for more on
"Modelines".

You can test modification, and apply them to the current session. For changes to be made permanent, they
will have to be added manually to the "Monitor" section of XF86Config (or XF86Config−4 for v.4.x)
with a text editor.

xvidtune will dutifully warn of you of the hazards of playing with the monitor settings. It is unlikely you can
hurt anything with modern monitors. But it is best used to make minor adjustments. Use at your own risk!

The X Window User HOWTO

2.3. xvidtune and Monitor Tuning 10

http://www.linuxdoc.org/HOWTO/XFree86-Video-Timings-HOWTO/index.html

3. Running X
Starting an X session is typically done in one of two ways: the X session is started via a display manager (like
xdm), and the user logs in at a GUI screen. Or, the user starts X manually after logging in to a text console.
The latter is typically done with the startx command, which is a simple shell script wrapper for xinit. X runs
with root privileges in either case, since it needs raw access to hardware devices.

Typically, which method is used, is determined by the system "runlevel". The default runlevel to launch at
boot is set generally set in /etc/inittab on Linux:

 # Run xdm in runlevel 5
 x:5:respawn:/etc/X11/xdm −nodaemon

That would start xdm, and thus X, at runlevel 5. It will "respawn", if it dies or is stopped for any reason. You
can also use the "init" command to change runlevels without rebooting (see man page).

Let's look briefly at both approaches, and then some additional configuration to set up the user's working
environment.

3.1. startx

startx will start X by first invoking xinit. By itself, this would put you at a blank, fuzzy looking, bare−bones
desktop with no Window Manager loaded. xinit basically takes two sets of command line arguments: client
specifications (programs to run, etc), and server specifications (X server options), separated by "−−". If no
client program is specified on the command line, xinit will look for a .xinitrc file in the user's home
directory, to run as a shell script. If found, this then would in turn run whatever user specified commands to
set up the environment, or launch programs that the file contained. If this file does not exist, xinit will use the
following initial command:

 xterm −geometry +1+1 −n login −display :0

If no .xserverrc is found in the user's home directory, X itself will be started with the following
command:

 X :0

As you see, this is not overly helpful as it just launches one xterm. The startx shell wrapper provides
additional functionality and flexibility to xinit. startx will invoke xinit for us, and provide some simple
configuration options as well. You can also issue commands such as the following, for instance:

 startx −− −dpi 100 −depth 16 #force X to 100 dots per inch
 #and colordepth of 16 (X v4 syntax)

3. Running X 11

Anything after the double dashes are passed as arguments directly to the X server via xinit. In this example,
you can force X to the resolution of your preference, and still have it use the configuration files we will cover
later in this document. See the Xserver man page for more command line options.

Instead of issuing the same command line every time, it is easier to use the configuration files to store this
type of information for us.

If you take a look at the startx script (/usr/X11R6/bin/startx on my system), you see it uses two
default configuration files to help set up the X environment: xinitrc and xserverrc. It looks first in
/etc/X11/xinit/, for the system wide files. It then checks the user's home directory for similar files,
which will take precedence if found. Note that the latter are Unix style "dot" files (e.g. ~/.xinitrc), and
are executable shell scripts.

You normally would not want to edit the system wide files, but you can freely copy these to your home
directory as a starting point, or just start from scratch. As you can tell by the names, one helps set up the X
server, and one sets up xinit by executing commands, preparing the environment and possibly starting client
programs like xterm or a Window Manager (yes, it's a client too).

3.1.1. xserverrc

As with all XFree86 configuration files, this is a plain text file, and is usually a simple, one line statement to
start the X server. It can include any valid command line options supported by your X installation. If you
always start X with your own options, this should be easier than typing the options each time. One possible
~/.xserverrc:

 exec X :0 −dpi 100 −nolisten tcp

This will start X on display :0, the first "display", at a dots−per−inch resolution of 100, and disables TCP
connections. See the Xserver man page for other valid options. This is just an example.

3.1.2. xinitrc

xinitrc is used to set up a suitable X environment, and to launch other programs, a.k.a "clients" that we
may want available as soon as X is started. You likely have a system wide xinitrc to start a predefined set
off programs. To customize this, create your own in your home directory. Name it .xinitrc, make sure it
is an executable script, and chmod +. An example (slightly modified from the original on my system):

#!/bin/sh
$XConsortium: xinitrc.cpp,v 1.4 91/08/22 11:41:34 rws Exp $

userresources=$HOME/.Xresources
usermodmap=$HOME/.Xmodmap

merge in defaults and keymaps
if [−f $userresources]; then

The X Window User HOWTO

3.1.1. xserverrc 12

 xrdb −merge $userresources
fi

if [−f $usermodmap]; then
 xmodmap $usermodmap
fi

if [−z "$BROWSER"] ; then
 # we need to find a browser on this system
 BROWSER=`which netscape`
 if [−z "$BROWSER"] || [! −e "$BROWSER"] ; then
 # not found yet
 BROWSER=
 fi
fi
if [−z "$BROWSER"] ; then
 # we need to find a browser on this system
 BROWSER=`which lynx`
 if [−z "$BROWSER"] || [! −e "$BROWSER"] ; then
 # not found yet
 BROWSER=
 else
 BROWSER="xterm −font 9x15 −e lynx"
 fi
fi

export BROWSER

start some nice programs
if [−f $HOME/.Xclients]; then
 exec $HOME/.Xclients
else
 xclock −geometry 50x50−1+1 &
 xterm −geometry 80x50+494+51 &
 if [−f /usr/X11R6/bin/fvwm]; then
 exec fvwm
 else
 exec twm
 fi
fi

#eof

Briefly, what this script does, is set up our working environment, with xmodmap (keyboard) and
xrdb (application resource settings). More on these below. Then the shell variable $BROWSER is set for a
GUI environment (Netscape in this example) so that any applications that might expect this, have a
reasonable choice available. Then the presence of the file Xclients is checked, both as a system wide file
and in the user's home directory. In this particular example, this is where any client applications are to be
started, including a Window Manager (see below). These could just have as easily been started here if we had
wanted to. If an Xclients file can't be found, then a Window Manager is started for us. Either fvwm, if
available, or XFree86's minimalist twm if not. If for some reason, neither of these can be started, the script
would exit, and X would fail to start.

The X Window User HOWTO

3.1.1. xserverrc 13

3.1.3. Xclients

Everything up to this point has followed pretty much a standard and predictable sequence of events. To
summarize, we have invoked startx, which in turn invoked xinit, which has parsed xinitrc for initial
settings. Most Linuxes should follow this same sequence, though the various values and settings may differ.

We now are at the last link in the chain where the user normally would specify his or her preferences,
including the Window Manager and/or desktop environment to be used. The system will provide sane,
though possibly uninteresting, defaults if the user has not done so. Presumably, this is why you are here ;−)

The Window Manager, or desktop environment, is typically the last application started. If you want other
programs (like xterm) started, they should be started before the Window Manager and "backgrounded" with
an "&". This can all be done in the user's ~/.xinitrc. Or as in the above example, the actual applications
are started from yet another script. Let's look at one short, hypothetical such script, .Xclients:

#!/bin/bash
~/.Xclients, start my programs.

xset s off s noblank
xset m 30/10 4
xset r rate 200 40

xscreensaver &
rxvt −geometry 80x50−50+150 &

echo Starting Window Manager...

if [−x /usr/X11R6/bin/wmaker]; then
 echo `date`: Trying /usr/X11R6/bin/wmaker... |tee −a ~/.wm−errors 2>&1
 exec /usr/X11R6/bin/wmaker >> ~/.wm−errors 2>&1
fi

echo `date`: Failed, trying fvwm... |tee −a ~/.wm−errors 2>&1

let's try regular fvwm (AnotherLevel doesn't work with fvwm1).
if [−n "$(type −path fvwm)"]; then
 # if this works, we stop here
 exec fvwm >> ~/.wm−errors 2>&1
fi

echo `date`: Failed, trying twm... |tee −a ~/.wm−errors 2>&1

wow, fvwm isn't here either ...
use twm as a last resort.
exec twm >> ~/.wm−errors 2>&1

Dead in the water here, X will exit as well, sigh...
echo `date`: Unable to start a Window Manager ... |tee −a ~/.wm−errors 2>&1

eof

This really isn't so different than what xinitrc was doing at all. We added a few wrinkles, including
starting a screen saver, a different terminal emulator that this user prefers (rxvt), with even more setting up of
the environment (monitor, mouse and keyboard) using xset this time, and a different Window Manager than
was available with the system defaults. This is in the user's home directory, so it won't be overwritten during

The X Window User HOWTO

3.1.3. Xclients 14

upgrades too.

Actually, X has already started at this point, and we are just putting the finishing touches on the
configuration. Notice the Window Managers are not "backgrounded" with "&" here. This is important!
Something has to run in the foreground, or X will exit. We didn't start a desktop environment in this example,
like KDE or GNOME, but if we did, this final application would have to be gnome−session or
startkde instead. Since we are rolling our own here, if we wanted to change Window Managers, all we have
to do is edit this file, and restart X. Vendor supplied configurations may be more complex than this, but the
same principles apply.

As an afterword, do not think that any initial client applications must be started as we've done here. This is
how it has been traditionally done, and some may prefer this approach. Most window managers have their
own built−in ways to start initial programs, as do KDE and GNOME. See the respective documentation.

3.2. Display Managers

The other, more common, approach is the "GUI log−in", where X is running before log−in. This is done with
the help of a "display manager", of which there are various implementations. XFree86 includes xdm (X
Display Manager) for this purpose, though your distribution may use one of the others such as
gdm (GNOME) or kdm (KDE).

Display managers really do much more than enable GUI style log−ins. They are also used to manage local as
well as remote "displays" on a network. We won't get into details on this here, but it is nicely covered in the
Remote X Apps Mini HOWTO and the XDMCP HOWTO (see the links section). For our purposes here, they
provide similar services to getty and login, which allow users to log into a system and start their default shell,
but in a GUI environment.

Here is an example of a more advanced usage of what else a display manager might be used for, from Diego
Zamboni:

I have two X sessions running with different resolutions. I switch between them depending
on whether my laptop is connected to an external monitor or using its own LCD display.

Here's my /usr/lib/X11/xdm/Xservers file that initiates both displays:

 :1 local /usr/X11R6/bin/X :1 −layout 1024x768
 :0 local /usr/X11R6/bin/X :0 −layout 1600x1200

Then I have "1024x768" and "1600x1200" defined as "server layouts" in my
/etc/X11/XF86Config−4, as follows:

 Section "ServerLayout"
 Identifier "1600x1200"
 Screen "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
 EndSection

The X Window User HOWTO

3.2. Display Managers 15

 Section "ServerLayout"
 Identifier "1024x768"
 Screen "Screen1" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
 EndSection

 ## snip ...

 Section "Screen"
 Identifier "Screen0"
 Device "S3 Savage/MX"
 Monitor "Monitor0"
 DefaultDepth 16

 Subsection "Display"
 Depth 16
 Modes "1600x1200" "1280x1024" "1024x768"
 EndSubsection
 EndSection

 Section "Screen"
 Identifier "Screen1"
 Device "S3 Savage/MX"
 Monitor "Monitor0"
 DefaultDepth 16

 Subsection "Display"
 Depth 16
 Modes "1024x768" "800x600"
 EndSubsection
 EndSection

Note the use of "Identifiers" here. Diego is starting two separate "displays" here. Then he can choose which
one he wants when he logs in.

Most display managers are derived from XFree86's venerable xdm, and add their own enhancements. Let's
look at the most popular ones briefly.

3.2.1. xdm

xdm can be configured with configuration files located in /etc/X11/xdm/,
/usr/X11R6/lib/X11/xdm, or similar locations depending on your system. These are system wide files.
The file xdm−config is the main configuration file, and mostly describes where to find secondary
configuration files:

 ! $XConsortium: xdm−conf.cpp /main/3 1996/01/15 15:17:26 gildea $
 DisplayManager.errorLogFile: /var/log/xdm−errors
 DisplayManager.servers: /etc/X11/xdm/Xservers
 DisplayManager.accessFile: /etc/X11/xdm/Xaccess
 ! All displays should use authorization, but we cannot be sure
 ! X terminals will be configured that way, so by default
 ! use authorization only for local displays :0, :1, etc.

The X Window User HOWTO

3.2.1. xdm 16

 DisplayManager._0.authorize: true
 DisplayManager._1.authorize: true
 ! The following three resources set up display :0 as the console.
 DisplayManager._0.setup: /etc/X11/xdm/Xsetup_0
 DisplayManager._0.startup: /etc/X11/xdm/GiveConsole
 DisplayManager._0.reset: /etc/X11/xdm/TakeConsole
 !
 DisplayManager*resources: /etc/X11/xdm/Xresources
 DisplayManager*session: /etc/X11/xdm/Xsession
 !
 ! SECURITY: do not listen for XDMCP or Chooser requests
 ! Comment out this line if you want to manage X terminals with xdm
 DisplayManager.requestPort: 0

The "!" denotes comments. The command that starts the X server is in /etc/X11/xdm/Xservers in this
particular example as defined by "DisplayManager.servers", and is the equivalent to xserverrc that was
used for startx X server start up commands, but the syntax is slightly different here. The contents of
/etc/X11/xdm/Xservers on my system are simply:

 :0 local /usr/X11R6/bin/X

This starts X on the first local display (designated by 0). Any special command line arguments that you want
to add go here at the end.

Below is a sample /etc/X11/xdm/Xsetup_0 which is used to configure the log−in screen only. Notice
that we're using a shell script here, and it's calling xv (a graphics display program) to set the background to a
nice image (instead of the boring black and white background pattern), and if that fails, xsetroot is then
invoked to at least try to set the background to a nicer blue color. This does not configure the login widget
itself −− just other things that might be wanted on the screen during login.

 #!/bin/sh
 xconsole −geometry 480x100−0−0 −daemon −notify −verbose −fn \
 '−schumacher−clean−medium−r−*−*−10−*−*−*−*−*−*−*' −exitOnFail &

 /usr/X11R6/bin/xv −quit −root /usr/share/pixmaps/Backgrounds/InDreams.jpg \
 || xsetroot −solid darkblue

/etc/X11/xdm/Xresources controls the X "resources" used during log in. In this context,
"resources" are user preferences for such items as fonts and colors (described in more detail below). Below is
a snippet that sets up fonts for the log−in widget:

 #if WIDTH > 800
 xlogin*greetFont: −adobe−helvetica−bold−o−normal−−24−240−75−75−p−138−iso8859−1
 xlogin*font: −adobe−helvetica−medium−r−normal−−18−180−75−75−p−103−iso8859−1
 xlogin*promptFont: −adobe−helvetica−bold−r−normal−−18−180−75−75−p−103−iso8859−1
 xlogin*failFont: −adobe−helvetica−bold−r−normal−−18−180−75−75−p−103−iso8859−1
 #else
 xlogin*greetFont: −adobe−helvetica−bold−o−normal−−17−120−100−100−p−92−iso8859−1
 xlogin*font: −adobe−helvetica−medium−r−normal−−12−120−75−75−p−69−iso8859−1
 xlogin*promptFont: −adobe−helvetica−bold−r−normal−−12−120−75−75−p−69−iso8859−1

The X Window User HOWTO

3.2.1. xdm 17

 xlogin*failFont: −adobe−helvetica−bold−o−normal−−14−140−75−75−p−82−iso8859−1
 #endif

As you can see this is using helvetica as the preferred font, with different point sizes and dots per inch
depending on the screen size. This is customizable to suit individual needs. (See below for more on
understanding X font naming conventions.) Various other aspects can similarly be configured.

/etc/X11/xdm/Xsession is the rough equivalent to xinitrc for startx. It will similarly set up a
default environment for keyboard, etc. And can also start either KDE or GNOME, and other X client
programs. This is the system wide configuration file. It should also check the user's home directory for
~/.xsession, and possibly ~/.Xclients, which would contain the user's preferred environment and
start up programs, just as ~/.xinitrc did with startx. Again, the files in a user's home directory may be
created or modified by the user any time and must be executable shell scripts.

We won't include an ~/.xsession example here, since it would be very similar to the ~/.xinitrc and
~/.Xclients examples above.

We've looked only briefly at the main xdm configuration files. Be sure to read the man page, and look at
what is installed locally, for more information. Let's look now at gdm and kdm. We'll just highlight
significant differences, since they essentially provide the same functionality.

3.2.2. gdm

gdm is the default display manager for GNOME. gdm was written from scratch, but functions similarly to
xdm. The main configuration file is gdm.conf, typically located as /etc/X11/gdm/gdm.conf. This is
quite different looking than xdm−config. Comments are denoted with a "#", and the file has sections, with
section headers enclosed in square brackets. The command to start X is in the "[servers]" section:

 [servers]
 0=/usr/bin/X11/X
 #1=/usr/bin/X11/X

Notice this has potentially two displays set up, but the second one is commented out. Add any additional
X startup options here, e.g. "−dpi 100". The log−in screen and log−in widget are configured in the
"[greeter]" section.

Start up clients and programs are determined by the "SessionDir" statement in the "[daemon]" section. On my
installation, this points to /etc/X11/gdm/Sessions/, which contains several short scripts. If I look at
my Default script, it actually executes /etc/X11/xdm/Xsession, which in turn would execute
~/.xsession, if present. So at this final stage, gdm acts very much like xdm.

GNOME includes the gdmconfig utility to control many aspects of gdm behavior.

The X Window User HOWTO

3.2.2. gdm 18

3.2.3. kdm

kdm is the display manager from KDE. The main configuration file for kdm is kdmrc and is typically
installed as /etc/kde/kdm/kdmrc. As is the case with gdm.conf, kdmrc uses "#" for comments, and
has sections with section headers in similar square brackets. kdm configuration can also be edited with the
kcontrol utility.

The visible desktop is configured in the "[Desktop*]" section(s), and by the "Setup" directive which should
point to a file like /usr/share/config/kdm/Xsetup or /etc/X11/xdm/Xsetup_0. This will
accomplish the same thing as xdm's Xsetup_0 does: namely running any programs the user might want
such as xconsole.

The command to launch the X server is the "Xservers" directive in the "[General]". Again, this should point
to a file such as /etc/X11/xdm/Xservers, and uses the same syntax as xdm:

 :0 local /usr/X11R6/bin/X

Any command line options for the X server, go here.

The login widget itself is configured in the "[X−*−Greeter]" section(s). Compiled in defaults are used if the
user does not specify any.

KDE includes the kdmdesktop utility to control some aspects of kdm behavior, mostly just the login
background.

The X Window User HOWTO

3.2.3. kdm 19

4. More X Configuration
Before taking a look at various configuration mechanisms for X servers and clients, it should be noted that
the advent of Desktop Environments like KDE have become popular in part because they can control much of
the user interaction configuration themselves with nice, "user friendly" GUI controls. And in fact, the
compliant applications that are part of the respective Desktops will be best configured through the Desktop's
configuration tools, or the application's own GUI configuration methods. So, for instance, gtop, a
GNOME client application, is best configured via GNOME or gtop's own menus. But this is not true of all
X applications.

4.1. X Resources

The X server can store various configuration values for client programs so they are readily available when
needed. If the application supports this, it will use these as defaults whenever that program is invoked. These
are known as "Resources", and are often used to define user preferences on a per application basis for fonts,
colors, screen placement (geometry) and various other attributes. This makes it easy to customize
applications.

Resources are specified as text strings (e.g. Netscape*blinkingEnabled: False) that can be read from disk in
various places when X is starting, or even interactively defined on the command line. Program components
are named in a hierarchical fashion, with each object in the hierarchy identified by a class as well as an
instance name. At the top level of the hierarchy is the class and instance name of the application itself.
Typically, the class name of the application is the same as the program name, but with the first letter
capitalized (e.g. Vim or Emacs) although some programs that begin with the letter "X" also capitalize the
second letter for historical reasons (e.g. XTerm). Each definition will specify a class (or instance), with
corresponding resource and value. Below this in the hierarchy are the various attributes that make up the
definable aspects of the application.

Traditionally, most X programs were configured this way. This is not as true today with the advent of
Desktop Environments which often have their own configuration mechanisms.

As an example, say we prefer to run xterm with a blue background. So if we run it from the command line,
we would run it as:

 xterm −bg blue &

If this is our preference, it would be easier to put this preference in a file somewhere, and have the system use
our preference. That way whenever we started xterm, it would use our preferred value, and we wouldn't need
the command line options (unless as an override).

The basic X resource syntax is expressed like:

 <program><binding><widget><binding><widget><...><resource>:<value>

Which, in real life, typically looks something like:

4. More X Configuration 20

 xterm*fontMenu*background: darkblue

It should be obvious what this does. The use of "*" in the definition, is called a "loose binding" and acts as a
wild−card. Meaning there may be gaps in the widget hierarchy. For instance:

 xterm*background: darkblue

This would also give a dark blue background for the xterm fontMenu, but also any other xterm properties
that also have a "background" attribute (e.g. window background, etc), no matter where they may be in the
widget hierarchy. Similarly:

 *background: darkblue

This would define the background for any and all programs that support it −− not just xterm. Using a "." in
place of a "*" would be more precise, and will not allow for wild−card gaps in the hierarchy. Also, the
application must support the particular widget attribute. "Background" is a fairly safe bet, but many
applications will have more specialized resources that are not so obvious. It is best to check local
documentation (man pages, etc), or see if an application has an included examples. For instance,
Netscape generally comes with an Netscape.ad file that has an extensive set of resource definitions that
can be customized.

X resources are typically stored in more than one place (see below) and are processed by the xrdb command
(see man page).

4.1.1. App Defaults

One way of storing preferred application resources is via files named for the application in an
"app−defaults" directory. For instance, on my system, these are in
/usr/X11R6/lib/X11/app−defaults/, though this may vary according to options your vendor has
chosen. This directory contains a number of files for such well known X applications as xterm, xclock,
xcalc, xload, and so on. All in all, it is a relatively small number of applications in the overall scheme of
things. So not all applications use this scheme. In fact, most do not.

Each file will contain resource definitions for that application. The X server loads these by itself during start
up. A brief example from XTerm−color:

 ! $XFree86$

 #include "XTerm"

 *VT100*colorMode: on
 *VT100*dynamicColors: on

 ! Uncomment this use color for underline attribute
 !*VT100*colorULMode: on

The X Window User HOWTO

4.1.1. App Defaults 21

 !*VT100*underLine: off

 ! Uncomment this to use color for the bold attribute
 !*VT100*colorBDMode: on

 *VT100*color0: black
 *VT100*color1: red3
 *VT100*color2: green3
 *VT100*color3: yellow3
 *VT100*color4: blue3
 *VT100*color5: magenta3
 *VT100*color6: cyan3
 *VT100*color7: gray90
 *VT100*color8: gray30
 *VT100*color9: red
 *VT100*color10: green
 *VT100*color11: yellow
 *VT100*color12: blue
 *VT100*color13: magenta
 *VT100*color14: cyan
 *VT100*color15: white
 *VT100*colorUL: yellow
 *VT100*colorBD: white

This is mostly various color definitions. The application classname is not explicitly stated, and is assumed
from the filename. So think of each line as starting: XTerm−color*. Also, notice at the top, the
#include "XTerm" line, which "includes" the resource definitions for XTerm, a much longer file with a
more diverse set of definitions. (Not included due to length, but worth looking at.) These files provide system
wide defaults, and generally speaking, would not normally be edited by the user.

4.1.2. Xdefaults

Another common method of reading in resource preferences, is with an Xdefaults file. Or, sometimes the
naming scheme may be Xresources instead. This may exist as a system wide file, such as
/etc/X11/Xresources. Of course, the user is free to create a personal version in his home directory,
e.g. ~/.Xdefaults. The user's version will over−ride any system wide settings, and will remain after
system upgrades. Obviously, this is the place to put your own preferences.

Xresources files are read into the resource database with the xrdb command. Example:

 xrdb −merge ~/.Xresources

This can be done interactively at the command line, or placed in a script and run automatically as the
X session is started. In the case of system wide files, this should be taken care of by the vendor supplied start
up scripts. Generally, such scripts will also check the user's home directory as well (see the
xinitrc example above). So probably all that need be done, is to create the file with a text editor.

Here's an example to illustrate a very few of the many things that might be done with an .Xdefaults file:

The X Window User HOWTO

4.1.2. Xdefaults 22

 ! This is a comment ;−)

 #ifdef COLOR
 *customization: −color
 #endif

 !! Let's cast a wide net, for any app supporting these
 ! Blink instead of beeping
 *visualBell: True
 *scrollTtyOutput: False
 *scrollKey: True

 ! See Netscape.ad for many settable resources
 Netscape*noAboutSplash: True
 Netscape*documentFonts.sizeIncrement: 5
 Netscape*documentFonts.xResolution*iso−8859−1: 120
 Netscape*documentFonts.yResolution*iso−8859−1: 120
 netscape−navigator*geometry: 960x820+240+140

 emacs*Background: DarkBlue
 emacs*Foreground: Wheat
 emacs*pointerColor: Orchid
 emacs*cursorColor: Orchid
 emacs*bitmapIcon: on
 emacs*font: 10x20

 ! GVim colors, etc
 !! GTK versions of gvim will not use all these.
 Vim*useSchemes: all
 Vim*sgiMode: true
 Vim*useEnhancedFSB: true
 Vim.foreground: Black
 !Vim.background: lightyellow2
 Vim*background: white
 ! geometry: width x height
 Vim.geometry: 88x40
 Vim*font: −misc−fixed−medium−r−normal−−20−200−75−75−c−100−iso8859−15−*5
 Vim*menuBackground: yellow
 Vim*menuForeground: black

 rxvt*backspacekey: ^?
 rxvt*background: Black
 rxvt*foreground: wheat
 rxvt*cursorColor: Orchid
 rxvt*geometry: 100x18+40+300
 rxvt*title: Linux
 rxvt*reverseVideo: false
 !rxvt*backgroundPixmap: ~/penguinitis.xpm
 rxvt*scrollBar: true
 rxvt*reverseWrap: true
 rxvt*font: −*−lucidatypewriter−medium−*−*−*−14−*−*−*−*−*−*−*
 rxvt*fullCursor: true
 rxvt*saveLines: 1500
 rxvt*menu: ~/rxvt.menu

 XTerm*saveLines: 1500
 ! Do not clear the screen after the program exits
 XTerm*VT100*titeInhibit: true

 ! Fix up xterm's keybindings
 xterm*VT100.translations: #override \
 <Key>BackSpace: string(0x7F) \n\

The X Window User HOWTO

4.1.2. Xdefaults 23

 <Key>Insert: string(0x1b) string("[2~")\n\
 <Key>Delete: string(0x1b) string("[3~")\n\
 <Key>Home: string(0x1b) string("[1~")\n\
 <Key>End: string(0x1b) string("[4~")\n\
 <Key>Page_Up: string(0x1b) string("[5~")\n\
 <Key>Page_Down: string(0x1b) string("[6~")\n\
 <KeyPress>Prior : scroll−back(1,page)\n\
 <KeyPress>Next : scroll−forw(1,page)

 ! Ghostview
 Ghostview*Font: *−helvetica−bold−r−normal−−12−*−*−*−*−*−*
 Ghostview*BorderColor: white
 Ghostview*Text*Font: rk14
 Ghostview*Background: #d9d9d9
 !Ghostview*Foreground: white
 ghostview.form.pageview.page.background: white
 ghostview.form.pageview.page.foreground: black
 .ghostview.zoom.form.page.background: white
 .ghostview.zoom.form.page.foreground: black

 ! xscreensaver !
 ! Time out after 12 minutes, cycle mode after each 2
 xscreensaver.timeout: 12
 xscreensaver.cycle: 5
 ! Run low priority, and fade between modes
 xscreensaver.nice: 12
 xscreensaver.fadeSeconds: 2

 XFontsel.menu.options.showUnselectable: False

Hopefully, these few examples will give you some ideas to build on. X does not need to be restarted if
xrdb is used interactively from the command line after making changes. The effects are immediate.

Resources are sometimes available also as command line options. See below. Command line options will
over−ride any existing resource definitions.

4.2. xmodmap, the Keyboard and Mice

The keyboard and mouse, as well as other possible input devices, are defined in XF86Config (or
XF86Config−4). There is a keyboard layout that is defined based on the preferred language:

 Section "InputDevice"
 Identifier "Keyboard0"
 Driver "keyboard"
 Option "XkbLayout" "us"
 EndSection

This gives us our default keyboard layout. Valid layout labels are listed in
/usr/X11R6/lib/X11/xkb/symbols. Also, the setxkbmap utility can be used to change this
interactively.

The X Window User HOWTO

4.2. xmodmap, the Keyboard and Mice 24

X is highly customizable, and we can modify the keyboard and mouse pointer mappings to suit our own
preferences. The utility to do this is xmodmap (see man page). You don't like where the capslock key is? So
move it ;−)

Like xrdb, xmodmap can be run from the command line. Or, preferred settings can be stored in a file.
Typically this is ~/.Xmodmap, or similar. If your X start up files don't parse this, then edit as appropriate so
that they do (probably from ~/.xinitrc or ~/.xsession).

You can view your current key and mouse mappings with: xmodmap −pk −pp |less. This will print out all
active "keycode" values, with corresponding "keysym" values, and any keysym names that xmodmap knows
about (e.g. "BackSpace"). And should also give you an idea of how xmodmap understands key and mouse
events. There are two keysyms per keycode. The second is the shifted value. XFree86's xev utility can be
used to dump a lot of information on key−presses and mouse events interactively. Pay attention to the
"keycode" value. That is what you will need to know in order to re−map.

xmodmap is often used to make minor keyboard adjustments, like proper Backspace/Delete mapping. Or can
be used make major adjustments such as for international mappings. You can only re−map keys and mouse
events −− you cannot assign macros to key events (your Window Manager or Desktop might have some of
this functionality).

Setting up international keyboards in nicely discussed in
http://www.linuxdoc.org/HOWTO/mini/Intkeyb/index.html. Also, a search of http://google.com/linux will
turn up many creative examples.

The man page has many brief examples of various usages. Here is what an one hypothetical
~/.Xmodmap might look like:

 ! /home/hal/.Xmodmap, last change 10/03/01
 !
 ! Force backspace to 22 and Delete to 111
 keycode 22 = BackSpace
 keycode 111 = Delete
 !
 ! My keyboard handles right and left Alt differently. Make the
 ! Right act like the Left to avoid digital gymnastics.
 keycode 63 = Alt_L
 keycode 113 = Meta_L
 !
 ! Hard−code the keypad to numeric values as if numlock is always on
 ! since I never use it for anything else.
 keycode 79=7
 keycode 80=8
 keycode 81=9
 keycode 83=4
 keycode 84=5
 keycode 85=6
 keycode 87=1
 keycode 88=2
 keycode 89=3
 keycode 90=0
 keycode 91=period
 keycode 86 = plus
 ! deactivate Num_Lock key since we don't need it now.
 keycode 77 =
 !
 ! My capslock is next to tab. I hit it by mistake sometimes,

The X Window User HOWTO

4.2. xmodmap, the Keyboard and Mice 25

http://www.linuxdoc.org/HOWTO/mini/Intkeyb/index.html
http://google.com/linux

 ! and don't use it anyway. So make capslock act like Tab.
 keycode 66 = Tab
 clear lock
 !
 ! Reverse mouse buttons for left−handed people
 pointer = 3 2 1

As with many XFree86 files, the "!" represents a comment. Another possible use, is to redefine those
annoying "Windows" keys to something useful. Hopefully this gives an idea of some things one might want
to do to make the keyboard more agreeable to us.

Speaking of the Numlock key, X will typically disable this when it starts up. No matter how you have the
BIOS set up, or Linux set up before X starts. So the trick above is one way. There is also a utility available as
either numlockx, or setnumlock, that can be found on the 'Net, if your distribution does not include one or the
other. This can be put in a start up file to turn Numlock on automatically if you'd prefer.

Window Managers and Desktop Environments will also allow customization of the keyboard and mouse (as
long as it is recognized correctly by X). This may be an easier way to configure certain customizations.

4.2.1. Special Key Mappings

There are several special key mappings traditionally used in XFree86.

Ctrl−Alt−BackSpace − Will kill the X server process in an orderly fashion. This is a quick, easy,
legitimate way to restart X. Note it does not restart the display manager (if used) −− just X itself.

•

Ctrl−Alt−Fx − where "x" corresponds to a valid tty number (typically 1−6). This is typically used to
jump to a text console login, while X remains running. To get back to X, then it is "Alt−Fx". In this
case, "x" represents one plus the last tty (e.g. Alt−F7 if there are six available ttys).

•

Ctrl−Alt−keypad+ and Ctrl−Alt−keypad− − That is the plus and minus keys on the keypad. This will
cycle through any existing valid screen resolution "Modes", e.g. 1024x768 −> 600x800. Note the
actual screen size is the same −− just the view and resolution changes. Not all that useful for most
purposes. You cannot permanently change the screen resolution without restarting X.

•

It's possible your Window Manager, Desktop Environment or other system component may trap these, and
alter the standard behavior. In addition, the Ctrl−Alt−Delete may be trapped as well. This should shut X (and
the system) down orderly, if it is available.

4.2.2. Mice and Pointers

As mentioned, Linux and Unix make heavy use of three mouse buttons. If a mouse only has two buttons, then
the third (i.e. the middle) button can be simulated by pressing both buttons simultaneously. This is a
configuration option set in XF86Config as the "Emulate3Buttons" directive:

 Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/mouse"
 Option "Protocol" "PS/2"

The X Window User HOWTO

4.2.1. Special Key Mappings 26

 Option "Emulate3Buttons" "on"
 EndSection

When all is said and done, a third button is quite handy and I would personally recommend having one. On
wheeled mice, the "wheel" acts as the third button, if pressed. Many standard wheel mice seem to work with
the "IMPS/2" protocol option.

Specifically, the third button (middle) is the "paste" button in virtually all Linux applications. Copy and paste
works a little different in Linux. The left button is the copy button. Just hold it down, and drag over text. It is
automatically copied to the X "clipboard". Then, the middle button will paste from there. A very simple
process. A double−click should copy individual words, and a triple−click individual lines of text. If for some
reason, this does not work, it is either a poorly implemented application, or a bug of some kind. Some older
versions of Netscape were not consistent about this, for instance. To paste from the keyboard, this should be
shift+insert.

"Drag and Drop" is not natively supported by X itself. But, is implemented by some toolkits and Desktop
Environments. One should not expect this to work with non−compliant applications (i.e non−KDE aware
applications in KDE for example).

4.3. xset

xset is yet another XFree86 utility to set user preferences. xset is a bit of a catch−all and is used to change
various, unrelated X server settings. Mostly this is a command line way of configuring some of the same
things that are defined in XF86Config (but not everything!).

Common usages of xset are to set DPMS on or off and preferred intervals, to dynamically change the
FontPath or re−read it, to control keyboard LEDs, to adjust mouse (or other pointer) movement speed, set
keyboard "autorepeat" and "repeat" rates, and to control X's built in screen blanking. See the man page, of
course, for detailed explanations, and other xset usages.

Again, xset can be used interactively from the command line. But most often preferred settings are stored in
one of the start up configuration files, like .xinitrc or .xsession. A very brief example:

 # Turn off screen blanking
 xset s off

 # Enable DPMS energy saving
 xset +dpms

 # Tweak the rodent
 xset m 30/10 4

 # Speed up keyboard
 xset r rate 200 40

Your desktop may have a GUI front−end for xset.

The X Window User HOWTO

4.3. xset 27

5. Fonts and Colors
Understanding fonts and colors can be more complex in X than on other platforms.

5.1. Fonts Demystified

X knows about various font types, including bitmaps, Type 1, and as of v4.x, TrueType. The X server can
either handle fonts itself, or sometimes this duty is forked to a font server (of which there are several). xfs (X
Font Server) is the most common font server in use on Linux.

A font server is not required, as X can handle most font rendering itself. Font servers are traditionally used
for serving fonts to multiple hosts on a network, but sometimes are also used to provide enhanced
functionality. Additionally, a font server may provide a modest performance boost by off−loading font
rendering to a separate process.

X knows about fonts according to fonts that are in the "FontPath". This is set initially in XF86Config. If the
X server is handling font duties itself (i.e. no font server), this will be a list of directories that contain font
files, like:

 FontPath "/usr/X11R6/lib/X11/fonts/misc:unscaled"
 FontPath "/usr/X11R6/lib/X11/fonts/100dpi:unscaled"
 FontPath "/usr/X11R6/lib/X11/fonts/75dpi:unscaled"
 FontPath "/usr/X11R6/lib/X11/fonts/Type1"
 FontPath "/usr/X11R6/lib/X11/fonts/misc"
 FontPath "/usr/X11R6/lib/X11/fonts/100dpi"
 FontPath "/usr/X11R6/lib/X11/fonts/75dpi"

If a font server is being used, the "FontPath" will point to the socket where the font server is serving (this is
just one possible example):

 FontPath "unix/:7101"

In this latter case, the actual font directories that are available will be configured with the font server (see
local documentation), which will use a similar directory type scheme as shown for XF86Config.

Once suitable fonts have been installed, they must be "prepared". For most fonts, this means running the
mkfontdir utility (see man page) in the directory where the fonts are (as root). Type 1 and TrueType require
additional steps (see below). Your vendor has done this for any fonts that were included with your
distribution. So, this will only need to be done for fonts that you add. For newly added fonts to become
visible to X, you will need to run the appropriate xset commands to either modify the existing FontPath, or
re−read it (see man page). Or, re−initialize your font server.

Example: Preparing fonts, and re−initializing font server after adding new fonts:

 su
 <password>

5. Fonts and Colors 28

 mkfontdir /usr/X11R6/lib/X11/fonts/my_new_fonts/
 /etc/init.d/xfs restart

The first command may not be necessary on newer distros (since it's done by the init script in some cases).
And the font server configuration would need to be modified, if this is a new directory. Example:
re−initializing with no font server:

 su
 <password>
 mkfontdir /usr/X11R6/lib/X11/fonts/my_new_fonts/
 xset +fp /usr/X11R6/lib/X11/fonts/my_new_fonts/
 xset fp rehash

The "xset +fp" would not be necessary if the directory is already part of the FontPath.

xlsfonts | less can be used to list what fonts are known, and thus available, to X and its clients. Run xlsfonts |
less, and you also can get an idea of the font definition as understood by X. Font resources are specified quite
explicitly, and it may seem complex at first. The X Logical Font Description ("XLFD") is the full description
for any given font. The XLFD looks like:

 −adobe−helvetica−medium−r−normal−*−*−120−*−*−p−*−iso10646−1

Where each field, left to right is:

fndry − font foundry, the company or individual which made the font.

fmly − font family, the popular nickname of the font

wght − font weight (bold, medium, etc.)

slant − font slant (italics, oblique, roman (normal), etc.)

sWdth − font width (normal, condensed, extended, etc.)

adstyl − additional style (sans serif, serif, etc.)

pxlsz − pixel size, the number of pixels vertically in a character

ptSz − approximate point size of the text (similar to pxlsz)

resx − horizontal resolution, in dpi

resy − vertical resolution, in dpi

The X Window User HOWTO

5. Fonts and Colors 29

spc − spacing, only useful, apparently, in the Schumacher fonts

avgWidth − average character width of the font

rgstry − the recognized registry that lists the font

encdng − nationality encoding

The "*" acts as a wild−card character. In fact, if not every field is specified, the X server will take the first
match it finds in the FontPath. This is why it is best to order the FontPath with preferred fonts coming first
since some programs will deliberately specify fonts "loosely" so that your system has some discretion.

The program xfontsel (X Font Selector) may be useful. Try launching it now. You will see nothing helpful in
the main window at first, but try holding the left button down on the fndry button. If all your fonts are in
order, you will see a menu of selections such as adobe and b&h and bitstream and so forth. Select one
such as b&h and you will notice that the font in the lower window changes to something intelligible. This is
the way fonts are selected with this program; starting from the left, which is the most general selection, and
moving toward the right, to the more specific options. Selecting an option toward the rightmost end will not
make much sense before the foundry, for instance, is selected, because the options are generally ordered by
their dependence on each other.

When you select from the fmly selection, you will see most of the options grayed out, and only three
remaining. That means that these three are the only families of font made by this foundry. Some families
appear under more than one foundry, for instance, both Adobe and Bitstream make a variation of the Courier
font. Now you can select the wght, and so forth. After you get far enough you will have narrowed it down to
the font that you want. You don't necessarily have to fill in all the options to choose a single font, there's not
that many fonts on your system! The options that you do not select will be represented by a * indicating that
any option will do in that spot, and gives X some leeway.

When you are satisfied with your font selection, hit the select button, and your selection will be placed in the
X clipboard, ready to be pasted into your document or whatever you are working on. For example, open an
xterm window and type in something like xterm −font followed by an opening quotation mark. Then
point to that spot on your screen, and click your middle mouse button (or click both the left and right, if
you're middle−button impaired). This will paste the selection from the clipboard, which should be the font
you just selected. Then enter the closing quote, and hit Enter. For instance, a nice big xterm with a Courier
font specified would look like this: xterm −font
"−adobe−courier−medium−r−*−*−14−*−*−*−*−*−*−*".

If you've found a font you prefer, this can permanently be used by placing the font definition in the
appropriate configuration file (see above).

Note that you can also limit the number of fonts that you want xfontsel to display with the command line
option −pattern, followed by a quoted font specification, as discussed above.

The xfd utility is also helpful for examining individual fonts. If launched with a command line such as xfd
−fn fixed, it will show you the complete character set for that font.

KDE and GNOME have their own utilities that are not quite as obtuse ;−)

The X Window User HOWTO

5. Fonts and Colors 30

5.1.1. Type 1 and TrueType Fonts

The fonts provided with XFree86 are of limited use for many of us, considering that about the only place
you'll find fonts of that kind, are used in the X Window System itself for the most part. Unfortunately many
media junkies, web designers and fontaholics work in operating systems that rely on other formats. And then,
there often does not seem to be much emphasis by some distributions on making the best of the default fonts
either.

Type 1 fonts, most commonly used in conjunction with PostScript document formats, are the traditional
standard in Unix and Linux environments. You should have a reasonably good starter selection installed
already. Or, more can be found for free on the Internet with considerable ease, and Try
ftp://ftp.cdrom.com/pub/os2/fonts/ for starters. Type 1 are scalable fonts, and have many of the same benefits
of the better known TrueType fonts. If you don't have a good selection of TrueType fonts installed, then Type
1 is what you want for most GUI applications. But again, this is not standard on other platforms, and can
present problems when viewing documents (e.g. web pages) that are designed with "other platforms" in mind.

TrueType fonts started with Apple, and later were licensed by Microsoft. So people migrating from
non−Unix platforms are already familiar with these high quality fonts. Unfortunately, there are not many
quality TrueType fonts under a suitable license, and thus there are not many included with Linux
distributions. And the ones that are, often are not as high quality. Also unfortunately, TrueType has become
somewhat of a standard on the Web and in other venues, and not having good TrueType fonts can be a
detriment.

That's the bad news. The good news is that any TrueType font included with any version of Windows, or any
Windows applications, should work on Linux. Though you will have to take some additional steps to
integrate them. This particularly helps web browsing where X's bitmapped fonts just don't scale well.

We won't go into detail on installing and configuring these fonts here, as it is addressed in depth in other
documents. See The Font HOWTO , http://www.linuxdoc.org/HOWTO/Font−HOWTO.html, for general font
information, and Type 1 tips. See The Font De−Uglification Mini HOWTO,
http://www.linuxdoc.org/HOWTO/mini/FDU/index.html, for various X related font tips, especially TrueType.

5.2. Colors

Let's go back to our terminal window and try something. Open an xterm with a command line like the
following:

 xterm −fg DarkSteelBlue1 −bg red3 &

Ouch! While that may not be pretty, and you may not do much of your best work in it, it demonstrates one
interesting aspect of X configuration −− color names. While not particularly precise, this is a nice way to
remember a variety of colors. Note that color names are never case−sensitive.

The X server will actually deal with color values as a hexadecimal Red−Green−Blue (RGB) color notation.
This would look something like "#0aff0a" in hex. Not so easy to remember. But X gives a more mnemonic
way of remembering valid color definitions. These are stored in a text table, typically as
/usr/X11R6/lib/X11/rgb.txt, and is defined in XF86Config in the "Files" section.

The X Window User HOWTO

5.1.1. Type 1 and TrueType Fonts 31

ftp://ftp.cdrom.com/pub/os2/fonts/
http://www.linuxdoc.org/HOWTO/Font-HOWTO.html
http://www.linuxdoc.org/HOWTO/mini/FDU/index.html

If you are interested, have a look with a text editor. There are many, many shades defined. I count
eighty−three shades of blue in mine, for instance. Brief snip:

 176 226 255 LightSkyBlue1
 164 211 238 LightSkyBlue2
 141 182 205 LightSkyBlue3
 96 123 139 LightSkyBlue4
 202 225 255 LightSteelBlue1
 188 210 238 LightSteelBlue2
 162 181 205 LightSteelBlue3
 110 123 139 LightSteelBlue4
 191 239 255 LightBlue1
 178 223 238 LightBlue2
 154 192 205 LightBlue3
 104 131 139 LightBlue4

This file can be customized should you desire, but this is rarely needed for most of us. It is important to have
though, since some applications depend on it.

Desktop Environments will have a GUI utility for selecting colors.

The X Window User HOWTO

5.1.1. Type 1 and TrueType Fonts 32

6. Window Managers and Desktops
We won't delve into configuring Window Manager's and Desktop Environments. There is just too much to try
to cover in one document. It is important to realize that the two are not the same. There are many, many
Window Managers available.

6.1. Window Managers

Window Managers are highly configurable. Many aspects of user interaction can be controlled by the
Window Manager.

Some of the most popular Window Managers:

aewm: http://www.red−bean.com/~decklin/aewm/

AfterStep: http://www.afterstep.org/

BlackBox: http://sourceforge.net/projects/blackboxwm

Enlightenment: http://www.enlightenment.org/pages/main.html

fvwm: http://www.fvwm.org/

IceWM: http://www.icewm.org/

olwm (OpenLook Window Manager): http://www.plig.org/xwinman/olvwm.html

Sawmill: http://sawmill.sourceforge.net/

WindowMaker: http://www.windowmaker.org/

XFce: http://xfce.org/

There are many, many lesser known ones as well. Check at freshmeat for others.

GNOME and KDE both have their default Window Manager, but support other, compliant Window
Managers as well. Your distribution probably has included at least several. Try them all if you don't already
have a favorite. Your distribution probably also has a method of switching dynamically between Window
Managers (and Desktop Environments too).

6.2. Desktop Environments

Desktop Environments are not really new, but their popularity has increased with advent of the two big
names: KDE and GNOME. To a certain extent, the Desktop Environment functionality overlaps the Window

6. Window Managers and Desktops 33

http://www.red-bean.com/~decklin/aewm/
http://www.afterstep.org/
http://sourceforge.net/projects/blackboxwm
http://www.enlightenment.org/pages/main.html
http://www.fvwm.org/
http://www.icewm.org/
http://www.plig.org/xwinman/olvwm.html
http://sawmill.sourceforge.net/
http://www.windowmaker.org/
http://xfce.org/
http://freshmeat.net

Manager's. They both can be responsible for the root window background, root window menu, icons,
taskbars, etc. Generally speaking, if a Desktop Environment is running, it is controlling these aspects. That is
the main idea behind them −− to integrate the various components into a cohesive, consistent whole. Desktop
Environments also add some interoperability and ease−of−use features that a simple Window Manager
cannot.

Oh, another point: Desktop Environments also try to do as much X session configuration as possible. Any of
their compliant clients will more than likely be configured by the Desktop, or have it's own configuration that
conforms to the Desktop's style. This is at least partly to avoid much of the seemingly helter−skelter text file
configuration we looked at in the above sections, and make life a little easier for the user.

There is a trade−off in this additional functionality, and that is that it takes memory and system resources to
oversee all this. If you have plenty of memory and a fast computer, this is no problem. But in low memory
situations, this can cause a slowdown (see the performance section below). 64M of RAM is probably
borderline with either KDE or GNOME.

So do you need a Desktop Environment? That is up to the user. They are certainly not required to run X, but
do add features that many users want or expect in a GUI. Which one is better? Ah, but that is up to you to
decide!

KDE has been around longer than GNOME, and some would say maybe a little more mature. KDE is based
on the QT widget toolkit. A quote from the KDE home page:

KDE is a powerful Open Source graphical desktop environment for Unix workstations. It
combines ease of use, contemporary functionality, and outstanding graphical design with the
technological superiority of the Unix operating system.

KDE is a mature desktop suite providing a solid basis to an ever growing number of
applications for Unix workstations. KDE has developed a high quality development
framework for Unix, which allows for the rapid and efficient creation of applications.

GNOME is based on the GTK+ toolkit. And a quote from the GNOME home page:

GNOME stands for GNU Network Object Model Environment. The GNOME project intends
to build a complete, user−friendly desktop based entirely on free software. GNOME is part
of the GNU project, and GNOME is part of the Open Source(tm) movement. The desktop
will consist of small utilities and larger applications which share a consistent look and feel.
GNOME uses GTK+ as the GUI toolkit for all GNOME−compliant applications.

XFce is a lighter weight, less featureful Desktop Environment that does not get as much attention as the
others. XFce is also based on the GTK+ toolkit. And a quote from the XFce home page:

The XFce project was first started because I needed a simple, light and efficient environment
for my Linux System.

I believe that the desktop environment should be made to increase user productivity.
Therefore, the goal is keep most system resources for the applications, and not to consume all
memory and CPU usage with the desktop environment.

The X Window User HOWTO

6. Window Managers and Desktops 34

http://kde.org
http://gnome.org
http://xfce.org

All these have their own extensive documentation. If you can't find what you need installed on your system,
check the respective home pages.

The X Window User HOWTO

6. Window Managers and Desktops 35

7. X and the Command Line
What would a Unix−like operating system be without a command line interface? The command line can be
useful, and is readily available with X. In fact, for many it is an integral part of their X working environment.

Any X program can be started directly from the command line just by typing the program name at a shell
prompt in an xterm, or other terminal window. Most applications will have a very rich set of command line
"options", such as background color, font, geometry (screen placement), etc, etc. Command line options
over−ride compiled in defaults, or other system enabled "resources".

Many traditional X programs will use the same basic names for command line options. All applications
written using the MIT X Toolkit Intrinsics (Xt) (such as those included with XFree86) automatically accept
the following options. Some non−Xt applications also use these, or something similar. For instance,
"geometry" is close to a universally accepted option.

−display [host]:display[.screen]

This option specifies the X server display to use. This is often used where applications are run on one
system, and displayed on another. The application needs to know where to display. This is sometimes
also accomplished by setting the "$DISPLAY" variable, which uses the same syntax.

−geometry geometry

The initial size and location of the window, in a format such as width x height
+horz_offset +vert_offset or +horz_offset −vert_offset. Note that if you put in
a negative horizontal or vertical offset, the window will be placed counting backward from the right
or the bottom of the screen, respectively, instead of from the top left corner.

−font fontname

The font to use for displaying the text in your window (see font section below).

−bg color

The color to use for the window background. Typically this is a "color name" (see below).

−fg color

The color to use for the window foreground (i.e. fonts, etc).

−name resource−name

Useful for specifying the name under which the resources for this application will be found (e.g. as
specified in .Xdefaults). This is useful to distinguish between invocations of the same
application. For example, two xterms can be "named" differently so that they may inherit different
resources based upon the specified names in the resource database.

−title string

7. X and the Command Line 36

This is the title to be used for the window on your display, generally used by the Window Manager to
put a descriptive title at the top of the window. Not to be confused with the "−name" option.

−iconic

Open window in an iconified state.

−xrm resource−string

This option specifies a resource name and value to override any defaults that may already be set (i.e.
via .Xresources or similar). Also useful for setting X resources that do not have explicit
command line options. For example, the command line "xterm −xrm xterm*background: blue &" is
functionally the same as "xterm −bg blue &".

These are the most noteworthy. There are others. Many programs will have their own additional options that
are application specific. Many newer applications today don't necessarily adhere to the Xt standards, and will
use their own options, or those provided by their respective toolkit. If nothing else, man pages are a good
reference for command syntax, and are your friends here. Or, the application will have a "−−usage" or
"−−help" command line switch to list available options:

 $ gnome−terminal −−usage
 Usage: gnome−terminal [−?] [−−disable−sound] [−−enable−sound]
 [−−espeaker=HOSTNAME:PORT] [−−version] [−−usage] [−−gdk−debug=FLAGS]
 [−−gdk−no−debug=FLAGS] [−−display=DISPLAY] [−−sync] [−−no−xshm]
 [−−name=NAME] [−−class=CLASS] [−−gxid_host=HOST] [−−gxid_port=PORT]
 [−−xim−preedit=STYLE] [−−xim−status=STYLE] [−−gtk−debug=FLAGS]
 [−−gtk−no−debug=FLAGS] [−−g−fatal−warnings] [−−gtk−module=MODULE]
 [−−disable−crash−dialog] [−−sm−client−id=ID] [−−sm−config−prefix=PREFIX]
 [−−sm−disable] [−−tclass=TCLASS] [−−font=FONT] [−−nologin] [−−login]
 [−−geometry=GEOMETRY] [−e COMMAND] [−x COMMAND] [−−foreground=COLOR]
 [−−background=COLOR] [−−solid] [−−pixmap=PIXMAP] [−−bgscroll]
 [−−bgnoscroll] [−−shaded] [−−noshaded] [−−transparent] [−−utmp]
 [−−noutmp] [−−wtmp] [−−nowtmp] [−−lastlog] [−−nolastlog] [−t TITLE]
 [−−icon=ICON] [−−termname=TERMNAME] [−−start−factory−server]
 [−−use−factory]

7.1. xterm and friends

Sooner or later, most of us need to access the "command line" for one reason or another. For some, this might
even be a common way of working in X. In addition to being able to launch X applications from the
command prompt, there is also a wealth of programs that run in "text mode" for Linux.

This is possible via "terminal emulators" such as xterm. The closest counterpart from Microsoft is the
so−called DOS−box, which is child's play by comparison. Linux terminals support color, full mouse
copy/paste (and some wheeled mice), pseudo−transparency and pixmap backgrounds, scrollbars, menus and
generally a slew of other features. While xterm is the best known such terminal emulator, there are many
similar programs. To name a few: Eterm, rxvt, aterm, konsole (KDE) and gnome−terminal.

In typical usage, when a terminal emulator window is opened, a shell is started for the user to interact with.
The default for essentially all Linuxes, is the bash shell. So when all is said and done, the user is interacting

The X Window User HOWTO

7.1. xterm and friends 37

with X, the terminal, and the shell all at once. Each may have it's own influence. For example, how
keystrokes are handled since they move from hardware to X server to terminal to the shell and finally echoed
back to the user.

Quick and easy terminal configuration is done via the "$TERM" variable, which is typically set in one of the
user's shell configuration files. Or the terminal itself will have a compiled in default. The default value for
this is most often "xterm":

 $ echo $TERM
 xterm

Normally this is sufficient, as your vendor has already set this up in a reasonable way. The
"$TERM" variable is actually a reference to an entry in the "termcap" database (man termcap), which is
typically installed as /etc/termcap. Unless you are doing something really unusual, you probably won't
need to change this. Some additional terminal configuration can be done with the stty command (see man
page). Terminal configuration is really beyond the scope of this document.

The terminal application itself (e.g. xterm) will also have various configuration options. Permanent settings
are best stored in a ~/.Xdefaults or similar file for those applications that support this. Generally
speaking, applications with a GUI configuration (such as gnome−terminal), will be configured by their own
menu driven configuration instead.

Also, you are interacting with the shell too, which can have it's own impact, particularly on how keystrokes
are handled at the shell prompt. For bash, this can be adjusted in ~/.inputrc. Again, this is beyond the
scope of this document, but check with either local or on−line bash (or other shell) references.

Terminal emulators like xterm require a monospaced font. So forget about TrueType or Type 1 fonts.

The X Window User HOWTO

7.1. xterm and friends 38

8. X Networking and Security
As mentioned, X is essentially a networking protocol with graphical displaying capabilities. This makes for
some interesting usage possibilities. And also means there are inherent security considerations, as there is
with any networking environment. And if you ever connect to the Internet, you are in the midst of one very
large, hostile network ;−)

X clients connect to X servers via various networking protocols, including TCP/IP. Even with just local
connections. Possible usages here are to run an application on one computer, and display it on another. Or, to
actually log in to a remote system, and have it display to your local screen, with the client apps using the
remote system's CPU and RAM.

Without any precautions, this can leave you wide open to various types of mischief and abuse. For instance,
anyone logged into to your system can access your "display", meaning they can see what you are doing if
they want to. Thankfully, most recent Linux releases come with some default security precautions enabled.
But it is best to make sure for yourself that you are protected.

Both X networking and security are nicely covered in The Remote X Apps Mini HOWTO,
http://www.linuxdoc.org/HOWTO/mini/Remote−X−Apps.html, so we won't need to try to rehash it here.
Recommended reading. See other references in the Links section of the Appendix below.

A few recommended precautions:

Never, ever run X as root. The number of bad things that can happen, dramatically increases when
logged in as root. Learn to run as much as possible as a regular user, and su to root only when
needed. This may sound like a lot of extra work (and probably is at first), but once the "right" way of
doing things is learned, it soon becomes second nature.

•

A brief anecdote from a friend: he had a client who's new system stopped "working". Curiously, he
found the entire /dev directory was missing, which he re−installed and all was well again. He was
back a few days later and found the system logged in as root to X, and someone had clicked on
/dev in the file manager, and dragged it onto the desktop. Smooth move!

If you ever connect to a network with untrusted users, be sure to have a firewall between you and
them. This goes double for the Internet. Firewalling is beyond the scope of this document, but is
covered in many other places, including your vendor's website. http://linuxdoc.org has several
security HOWTOs that can help as well. http://linuxsecurity.com/docs/ is another good place to look.

•

You can disable TCP connections with the "−nolisten tcp" command line X server switch. This does
not help for local connections though. For xinit/startx:

•

 exec X :0 −dpi 100 −nolisten tcp

Placed in ~/.xserverrc. And for xdm, in /usr/lib/X11/xdm/Xservers:

 :0 local /usr/X11R6/bin/X :0 −nolisten tcp

8. X Networking and Security 39

http://www.linuxdoc.org/HOWTO/mini/Remote-X-Apps.html
http://linuxdoc.org
http://linuxsecurity.com/docs/

9. Performance Considerations
As has been discussed, what we call X, is actually a convergence of various components: X server, Window
Manager, Desktop, etc. With MS Windows, the GUI desktop is tightly integrated with the operating system
itself. This is not the case in Linux which follows the Unix tradition of combining various independent
components to achieve some end result. So we have choices with each component and it's attendant
configuration and implementation. In short, much flexibility. This is where you come in. You can try various
possibilities and decide what you gives you the most bang for the buck.

On low end hardware, this gives us much latitude to decrease the demand on available system resources. This
is good because, if given the opportunity, X can be quite greedy with system resources. If you've recently
installed a new Linux distribution, you've probably been given a default Desktop with many bells and
whistles. And something that will probably need a fair amount of memory and CPU to achieve a reasonable
level of performance. If you have the horse power, this should not be a problem.

It is often said that Linux functions very well with relatively little memory. This is true to a point. It does not
mean though that every possible configuration will run with low memory. So if you want to use memory
hungry applications, then you will have to have the memory. Or you will have to make sacrifices to achieve a
satisfactory level of performance. It is quite possible to run X with reasonable performance on 16 Meg of
RAM, and even less if you really want to push it. But you would have to live with some real limitations.

Let's look at some of the components and ways to decrease the demand on system resources, in case you are
at the low end on hardware, or performance is not up to expectations.

9.1. Hardware

No big surprise, but overall system performance will be best with a fast graphics card, a fast hard
drive, and lots and lots of memory −− if you want both a fast and flashy system.

•

Graphics cards are of course necessary, and the X server's video performance is tied to the card's
chipset, and the corresponding XFree86 driver. Just because a given card is supported by XFree86
does not necessarily mean it is as well optimized as other cards! It may also perform better at a lower
color depth (see below). It may well be worth the trip to xfree86.org to see if there are any notes
related to your card with respect to performance or other issues.

•

And you might try other versions of XFree86. At this time v4.2 was just recently released. Some
cards may still perform better with 3.3.6 due to the way v4.x is being incrementally developed. If you
are using x4.x and performance is not good, then make sure you are using the latest available version.

•

9.2. Memory

The more memory, the better. X will do a lot caching to help performance. But caching requires memory, and
if there isn't much to start with, then we would need to reduce memory requirements. Some tips for those
with low memory or performance problems:

Use the free command to make sure all memory and swap is recognized. •
Make sure you don't have other system services that are hogging memory or CPU. Use top or ps to
see what is running, and disable anything you can to free up memory and CPU. Again, a default

•

9. Performance Considerations 40

installation may have many things running that you don't really need.
Make sure you have plenty of swap space. With low, or even modest, memory, swap is all the more
important. A general rule of thumb is twice as much swap as physical memory. With low memory,
this is not enough. Try four times real memory. Or more. If you can't create more swap partitions, see
the mkswap man page about creating swap files instead. Constant disk churning is a symptom of
insufficient swap space, and the system will be slowed as a result. Or, a possibly this is a poorly
behaved kernel VM system (try another kernel in this case).

•

Drive performance is important for swap performance. Make sure your drive has DMA enabled if the
drive supports it, and is otherwise tuned and performing up to snuff. See the hdparm man page.
Slow drive + slow card + low memory = slow system.

•

Don't use KDE or GNOME if memory is tight. These both require substantial memory, and are not
required to just run X. Think of these as usability enhancements. 32M probably is not be enough.
64M may be decent, depending on what other applications are being used, and other variables. 128M
should be adequate in most situations. 256M or more to be comfortable. File Managers like
Nautilus and gmc can also be memory hungry.

•

Use a lightweight window manger. WindowMaker, BlackBox, IceWM, fvwm (and variants), XFce,
all have reputations of performing well with low memory. There are surely others as well.
Experiment. fvwm is generally considered the lightest of the light.

•

A very nice desktop is still very possible even without KDE or GNOME. In fact, most KDE and
GNOME applications can still be used even if KDE and GNOME are not running themselves
(assuming the right libs are installed).

Don't use fancy themes or backgrounds. Plain and simple is easier on resources. Use a solid color
background. Avoid pixmaps or gradients for any kind of background, including menus, title bars, etc.

•

Use a lesser screen size and color depth. 800x600x16 will not push X as hard and be easier on system
resources than higher values. While a ColorDepth of 24 is preferred, you probably will not notice the
difference of 16 with the majority of applications.

•

Some applications require much more memory than others. Some notable hogs are Netscape,
Mozilla, office suites, and the Gimp. Netscape is faster than Mozilla (but not as nice).
Netscape−Navigator uses less memory than Netscape−Communicator. Close any of these apps
when not in use. Use text browsers like lynx or w3m wherever you can, like reading locally installed
HTML documentation. Much faster, and much less memory is required.

•

Also, use text based clients for mail (mutt or pine) and news (slrn or trn). Again, faster and much
less memory is used, and these are after all text based protocols at heart anyway.

•

rxvt uses less memory than xterm, konsole or gnome−terminal. •
If you run an X session for long periods of time (like days or weeks), restart X occasionally to free
memory tied up as cache.

•

Disable "backing store" and "save−unders" to reduce memory usage (performance penalty though).
Check your Window Manager's settings too. See what modules are being loaded in the
"Modules" section of XF86Config as well. Your installation may have many unnecessary ones
enabled, or ones you can't take advantage of (e.g. "v4l", aka "Video4Linux").

•

Font servers may provide a slight performance boost by off−loading font rendering to the font server,
while freeing the X server to do other things. But, the font server will use a small additional amount
of memory as well. So, you can try it either way to see if it makes a difference.

•

Lastly, RAM is cheap now. Buy some ;−) A new drive too. •
RAM is still just too low for X? Check out tinyX: http://www.superant.com/smalllinux/tinyX01.html.
Reportedly runs in as little as 4 Meg of RAM.

•

The X Window User HOWTO

9. Performance Considerations 41

http://www.superant.com/smalllinux/tinyX01.html

9.3. Other Tips

Other tips to eek out better performance:

Use xset to speed up the keyboard. This can make the system feel more responsive even if it isn't
really. The default always seemed sluggish to me.

•

renice X to give it a higher priority. Other platforms give the GUI high scheduling priority to achieve
better responsiveness. But this is at a cost to other processes. Linux is a blank slate. You might
include the font server (if being used), and key KDE and GNOME processes as well.

•

 nice −n −10 X :0

This won't do much on systems that are mostly idle.

This does not work so well with startx since X runs as root, and you're not root, right? So you'd have
to use something like sudo to have this done automatically.

The X Window User HOWTO

9.3. Other Tips 42

10. Appendix

10.1. Terminology and Usage

There are a few basic concepts and terminologies you should be familiar with. These terms will appear here,
in the manual pages, and in other help files and documentation.

The "X server" is the low−level driver software that interacts with your video card and other system
hardware, and manages the "display" and the various components attached to the
"display" (keyboard, mouse, etc.). And, of course, handles requests from clients as well. There are
different X servers for different chipsets.

•

X Servers are referenced in the form of:

host.domain:display_number.screen_number

An example would look like: my_computer:0.0

If host (and domain) is omitted, localhost is assumed. "Host" can be a remote host. If "screen" is
omitted, then "0" (the first screen) is assumed. In it's shortest form, the X server is often represented
as just ":0", which would be the first local "display". X supports multiple "displays" and multiple
"screens".

"Screen" and "Display" have special meanings in relation to X servers, in addition to their more
common usage.

When X is invoked, the X server will initialize one or more "displays". Yes, X can have more than
one "display" available (though this is not a common configuration for the average user). Each
"display" is a separate instance of "X". The "display" includes not only the obvious video
components, but also the keyboard, mouse and other input type components. The user can only
access one display at a time via the same keyboard and monitor. "Displays" may reside locally, or on
a networked host "somewhere", or both. It is possible that if multiple "displays" are available, the
user can choose which one he wants when he logs in. Each "display" may have its own unique
configuration (e.g. resolution). But again, the most typical configuration is just one "display" with
one "screen", which is how most of us use X.

•

In reference to X servers, "screen" means the primary video output with which you view X. And
there can be more than one "screen", just like you can have more than one "display". Additional
"screens" are used in "multi−headed displays" for instance. In fact you can even have more than one
computer running off a single X server. This is beyond the scope of this document, but you should be
aware of this degree of flexibility as it is an important ingredient of the X protocol.

•

"Desktop" can mean different things in different contexts. Often, "desktop" means what is more
properly called the "Desktop Environment". Prime examples of this are KDE, GNOME, and the not
as well−known CDE, which are high level applications that control much of how the user interacts
with the X session. They provide consistent look and feel, as well as consistent configuration and
come bundled with their own set of utilities for common tasks.

•

"Desktop" also sometimes just means the viewable screen area. This is more of the MS Window's
meaning. X environments though are capable of having multiple virtual "desktops" that can be
switched between as needed. This helps with organizing different tasks. Each "desktop" may its own

10. Appendix 43

windows and clients that are specific to it. Right now I have seven WindowMaker desktops
(WindowMaker calls them "WorkSpaces"), and one of those I have dedicated to writing this
document. This "desktop" has thirteen unique windows at the moment (man pages, browser
windows, clock, gvim, xterms, etc).

"Clients" are any program that connect to the X server, and require an X server for some task (e.g. to
display itself). Often, these are displayed in their own "window", but not always. For instance, if I
use CTRL−N to open a new Mozilla window, this is one X client but with two windows. If I run a
command line X utility like xev to view key and mouse events, this runs in the xterm's window, so
has none of its own, but is still a "client". Clients can be locally running applications, or applications
that are running on another system over the network, but are displayed locally.

•

The "Window Manager" is a special type of client application and a user definable component of the
GUI. It is what the user interacts with to a large extent. The Window Manager provides such
functionality as window borders and decorations, menus, icons, virtual desktops, button bars, tool
bars, and allows the user to customize these. It is technically possible to run X without a window
manager (though not very functional), but not the other way around. Window managers should not be
confused with "Desktop Environments" like KDE. Desktop Environments include their own
preferred Window Manager, but this is a configurable. There is some overlapping of responsibilities
between Window Managers and Desktop Environments.

•

The "root window" is the background of your screen. It is referred to as a window in name alone, it
does not behave like any other window, but rather you run your applications on the root window, or
put an image on it, or perhaps just a solid color. All other windows are children of this parent
window. The root window conceivably can be larger than the viewable screen area.

•

The "pointer" is the arrow or indicator of any given shape which represents the location of your
mouse, or other pointing device. The pointer often changes to give you contextual feedback as to
what will happen when you use the mouse at that point on the screen.

•

The "window" is a frame in which any given application runs and which is "managed" by the
Window Manager. This includes pretty much anything except the so−called root window. Even
windows which do not appear to have frames, titles, or normal borders of any kind are being
managed by your window manger. The "active window" is the window you are currently using. This
window will will respond to the keyboard when you type, and is traditionally denoted by the fact that
your mouse cursor is pointing at it, though this is not always the case. The active window is said to
have "focus". Most Window Managers will somehow highlight the "active", or focused, window to
differentiate it from other windows.

•

"Menus", "icons" and "task bars" behave in X similar to the way they behave in other windowing
systems, and the same general principles apply.

•

Windows that run text only applications are called "terminal emulators", such as xterm and various
similar applications. This is the well−known "command line" in an X environment. These basically
emulate a console text−only display, and have some advantages due to their being used in X. These
are much more complex and sophisticated applications than a simple DOS box on Windows.

•

"Widgets" is the term used to describe such GUI control components as buttons, sliders, menus,
scrollbars, listboxes, checkboxes, etc. "Toolkits" are libraries containing a diverse set of widgets with
the same look and feel. Some common examples are GTK+ (used by GNOME, Mozilla and others),
Xaw (X Athena Widget set), Tk, Motif and QT (used by KDE). Applications are built with one
toolkit or another. Sometimes the same application can be built with different toolkits, depending on
compile time options.

•

Window "geometry" is a shorthand way of expressing a window's size and screen placement. This
might look like "60x20+10+50", which is WIDTH x HEIGHT +VERT_OFFSET
+HORZ_OFFSET. While both pairs are often specified, it is permissible to use just one or the other
pair.

•

The X Window User HOWTO

10. Appendix 44

In X lingo, "resources" are definable application attributes. Commonly available "resources" are
fonts, colors, size, window title, etc, etc.

•

10.2. Links and other References

The definitive source of information on XFree86 is, of course, http://xfree86.org. Don't forget the
man pages that you have installed already too (X, Xserver, XF86Config, XFree86, xdm, xinit,
xmodmap, startx, xauth, Xsecurity, etc, etc). These are really mostly decent, though some are quite
technical.

•

Some pages at xfree86.org to check:

Docs and support info: http://www.xfree86.org/support.html for various versions and topics.

README: http://www.xfree86.org/current/README.html

Release Notes: http://www.xfree86.org/current/RELNOTES.html

DRI: http://www.xfree86.org/current/DRI.html

Status: http://www.xfree86.org/current/Status.html

Mouse: http://www.xfree86.org/current/mouse.html

Supported card list: http://xfree86.org/cardlist.html

Other related documents from LDP: •

If you are just starting out, you may find the X Window System Architecture Overview
HOWTO, http://www.linuxdoc.org/HOWTO/XWindow−Overview−HOWTO/ to be helpful.
It covers all the basic concepts quite well.

♦

The Remote X Apps Mini HOWTO,
http://www.linuxdoc.org/HOWTO/mini/Remote−X−Apps.html, does a nice job of discussing
running X remotely, and related security issues of X networking.

♦

The XDMCP HOWTO, http://www.linuxdoc.org/HOWTO/XDMCP−HOWTO/index.html,
covers the X Display Manager Control Protocol, for running X remotely. Also, The XDM
and X Terminal mini−HOWTO,
http://www.linuxdoc.org/HOWTO/mini/XDM−Xterm/index.html.

♦

The XFree86 HOWTO, http://www.linuxdoc.org/HOWTO/XFree86−HOWTO/index.html,
succinctly covers installation, and initial configuration.

♦

The XFree86 Video Timings HOWTO,
http://www.linuxdoc.org/HOWTO/XFree86−Video−Timings−HOWTO/index.html, gets
down and dirty with the finer points of monitor tuning. Generally not required for XFree86
v4.x.

♦

The Xinerama HOWTO, http://www.linuxdoc.org/HOWTO/Xinerama−HOWTO.html,
covers multi−headed displays.

♦

The Font HOWTO, http://www.linuxdoc.org/HOWTO/Font−HOWTO.html, covers various♦

The X Window User HOWTO

10.2. Links and other References 45

http://xfree86.org
http://www.xfree86.org/support.html
http://www.xfree86.org/current/README.html
http://www.xfree86.org/current/RELNOTES.html
http://www.xfree86.org/current/DRI.html
http://www.xfree86.org/current/Status.html
http://www.xfree86.org/current/mouse.html
http://xfree86.org/cardlist.html
http://www.linuxdoc.org/HOWTO/XWindow-Overview-HOWTO/index.html
http://www.linuxdoc.org/HOWTO/mini/Remote-X-Apps.html
http://www.linuxdoc.org/HOWTO/XDMCP-HOWTO/index.html
http://www.linuxdoc.org/HOWTO/mini/XDM-Xterm/index.html
http://www.linuxdoc.org/HOWTO/XFree86-HOWTO/index.html
http://www.linuxdoc.org/HOWTO/XFree86-Video-Timings-HOWTO/index.html
http://www.linuxdoc.org/HOWTO/Xinerama-HOWTO.html
http://www.linuxdoc.org/HOWTO/Font-HOWTO.html

font topics.
The Font De−Uglification Mini HOWTO,
http://www.linuxdoc.org/HOWTO/mini/FDU/index.html, covers a range of X font issues.

♦

The International Keyboard HOWTO;
http://www.linuxdoc.org/HOWTO/mini/Intkeyb/index.html

♦

The Linux Infrared HOWTO:
http://www.linuxdoc.org/HOWTO/Infrared−HOWTO/index.html

♦

Wheel mice tips and configuration: http://koala.ilog.fr/colas/mouse−wheel−scroll/•
Linux and Laptops: http://www.linux−laptop.net/•
The O'Reilly series on X Window! Visit http://www.ora.com/ for the definitive books on X. •
The X Consortium's web site is http://www.x.org/ ... or perhaps it's moved to
http://www.opengroup.org/.

•

http://www.x11.org/ is sort of a clearinghouse for all things X. •
And for everything else under the Sun: http://google.com/linux. An incredible resource in its own
right.

•

The X Window User HOWTO

10.2. Links and other References 46

http://www.linuxdoc.org/HOWTO/mini/FDU/index.html
http://www.linuxdoc.org/HOWTO/mini/Intkeyb/index.html
http://www.linuxdoc.org/HOWTO/Infrared-HOWTO/index.html
http://koala.ilog.fr/colas/mouse-wheel-scroll/
http://www.linux-laptop.net/
http://www.ora.com/
http://www.x.org/
http://www.opengroup.org/
http://www.x11.org/
http://google.com/linux

	Table of Contents
	1. Introduction
	1.1. New Versions and ChangeLog
	1.2. To Do
	1.3. Feedback
	1.4. Help!
	1.5. Acknowledgments
	1.6. Copyright
	1.7. Standard Disclaimer

	2. XFree86
	2.1. Hardware
	2.2. XF86Config
	2.3. xvidtune and Monitor Tuning

	3. Running X
	3.1. startx
	3.1.1. xserverrc
	3.1.2. xinitrc
	3.1.3. Xclients

	3.2. Display Managers
	3.2.1. xdm
	3.2.2. gdm
	3.2.3. kdm

	4. More X Configuration
	4.1. X Resources
	4.1.1. App Defaults
	4.1.2. Xdefaults

	4.2. xmodmap, the Keyboard and Mice
	4.2.1. Special Key Mappings
	4.2.2. Mice and Pointers

	4.3. xset

	5. Fonts and Colors
	5.1. Fonts Demystified
	5.1.1. Type 1 and TrueType Fonts

	5.2. Colors

	6. Window Managers and Desktops
	6.1. Window Managers
	6.2. Desktop Environments

	7. X and the Command Line
	7.1. xterm and friends

	8. X Networking and Security
	9. Performance Considerations
	9.1. Hardware
	9.2. Memory
	9.3. Other Tips

	10. Appendix
	10.1. Terminology and Usage
	10.2. Links and other References

